ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfltxr Unicode version

Theorem mnfltxr 9722
Description: Minus infinity is less than an extended real that is either real or plus infinity. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
mnfltxr  |-  ( ( A  e.  RR  \/  A  = +oo )  -> -oo  <  A )

Proof of Theorem mnfltxr
StepHypRef Expression
1 mnflt 9719 . 2  |-  ( A  e.  RR  -> -oo  <  A )
2 mnfltpnf 9721 . . 3  |- -oo  < +oo
3 breq2 3986 . . 3  |-  ( A  = +oo  ->  ( -oo  <  A  <-> -oo  < +oo ) )
42, 3mpbiri 167 . 2  |-  ( A  = +oo  -> -oo  <  A )
51, 4jaoi 706 1  |-  ( ( A  e.  RR  \/  A  = +oo )  -> -oo  <  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698    = wceq 1343    e. wcel 2136   class class class wbr 3982   RRcr 7752   +oocpnf 7930   -oocmnf 7931    < clt 7933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-cnex 7844
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938
This theorem is referenced by:  xrltso  9732
  Copyright terms: Public domain W3C validator