ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfltxr Unicode version

Theorem mnfltxr 9743
Description: Minus infinity is less than an extended real that is either real or plus infinity. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
mnfltxr  |-  ( ( A  e.  RR  \/  A  = +oo )  -> -oo  <  A )

Proof of Theorem mnfltxr
StepHypRef Expression
1 mnflt 9740 . 2  |-  ( A  e.  RR  -> -oo  <  A )
2 mnfltpnf 9742 . . 3  |- -oo  < +oo
3 breq2 3993 . . 3  |-  ( A  = +oo  ->  ( -oo  <  A  <-> -oo  < +oo ) )
42, 3mpbiri 167 . 2  |-  ( A  = +oo  -> -oo  <  A )
51, 4jaoi 711 1  |-  ( ( A  e.  RR  \/  A  = +oo )  -> -oo  <  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 703    = wceq 1348    e. wcel 2141   class class class wbr 3989   RRcr 7773   +oocpnf 7951   -oocmnf 7952    < clt 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959
This theorem is referenced by:  xrltso  9753
  Copyright terms: Public domain W3C validator