ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfltxr Unicode version

Theorem mnfltxr 9855
Description: Minus infinity is less than an extended real that is either real or plus infinity. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
mnfltxr  |-  ( ( A  e.  RR  \/  A  = +oo )  -> -oo  <  A )

Proof of Theorem mnfltxr
StepHypRef Expression
1 mnflt 9852 . 2  |-  ( A  e.  RR  -> -oo  <  A )
2 mnfltpnf 9854 . . 3  |- -oo  < +oo
3 breq2 4034 . . 3  |-  ( A  = +oo  ->  ( -oo  <  A  <-> -oo  < +oo ) )
42, 3mpbiri 168 . 2  |-  ( A  = +oo  -> -oo  <  A )
51, 4jaoi 717 1  |-  ( ( A  e.  RR  \/  A  = +oo )  -> -oo  <  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709    = wceq 1364    e. wcel 2164   class class class wbr 4030   RRcr 7873   +oocpnf 8053   -oocmnf 8054    < clt 8056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061
This theorem is referenced by:  xrltso  9865
  Copyright terms: Public domain W3C validator