ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfltpnf Unicode version

Theorem mnfltpnf 9877
Description: Minus infinity is less than plus infinity. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
mnfltpnf  |- -oo  < +oo

Proof of Theorem mnfltpnf
StepHypRef Expression
1 eqid 2196 . . . 4  |- -oo  = -oo
2 eqid 2196 . . . 4  |- +oo  = +oo
3 olc 712 . . . 4  |-  ( ( -oo  = -oo  /\ +oo  = +oo )  -> 
( ( ( -oo  e.  RR  /\ +oo  e.  RR )  /\ -oo  <RR +oo )  \/  ( -oo  = -oo  /\ +oo  = +oo ) ) )
41, 2, 3mp2an 426 . . 3  |-  ( ( ( -oo  e.  RR  /\ +oo  e.  RR )  /\ -oo 
<RR +oo )  \/  ( -oo  = -oo  /\ +oo  = +oo ) )
54orci 732 . 2  |-  ( ( ( ( -oo  e.  RR  /\ +oo  e.  RR )  /\ -oo  <RR +oo )  \/  ( -oo  = -oo  /\ +oo  = +oo )
)  \/  ( ( -oo  e.  RR  /\ +oo  = +oo )  \/  ( -oo  = -oo  /\ +oo  e.  RR ) ) )
6 mnfxr 8100 . . 3  |- -oo  e.  RR*
7 pnfxr 8096 . . 3  |- +oo  e.  RR*
8 ltxr 9867 . . 3  |-  ( ( -oo  e.  RR*  /\ +oo  e.  RR* )  ->  ( -oo  < +oo  <->  ( ( ( ( -oo  e.  RR  /\ +oo  e.  RR )  /\ -oo 
<RR +oo )  \/  ( -oo  = -oo  /\ +oo  = +oo ) )  \/  ( ( -oo  e.  RR  /\ +oo  = +oo )  \/  ( -oo  = -oo  /\ +oo  e.  RR ) ) ) ) )
96, 7, 8mp2an 426 . 2  |-  ( -oo  < +oo  <->  ( ( ( ( -oo  e.  RR  /\ +oo  e.  RR )  /\ -oo 
<RR +oo )  \/  ( -oo  = -oo  /\ +oo  = +oo ) )  \/  ( ( -oo  e.  RR  /\ +oo  = +oo )  \/  ( -oo  = -oo  /\ +oo  e.  RR ) ) ) )
105, 9mpbir 146 1  |- -oo  < +oo
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   class class class wbr 4034   RRcr 7895    <RR cltrr 7900   +oocpnf 8075   -oocmnf 8076   RR*cxr 8077    < clt 8078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083
This theorem is referenced by:  mnfltxr  9878  xrlttr  9887  xrltso  9888  xrlttri3  9889  nltpnft  9906  npnflt  9907  ngtmnft  9909  nmnfgt  9910  xltnegi  9927  xposdif  9974
  Copyright terms: Public domain W3C validator