ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfltpnf Unicode version

Theorem mnfltpnf 9977
Description: Minus infinity is less than plus infinity. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
mnfltpnf  |- -oo  < +oo

Proof of Theorem mnfltpnf
StepHypRef Expression
1 eqid 2229 . . . 4  |- -oo  = -oo
2 eqid 2229 . . . 4  |- +oo  = +oo
3 olc 716 . . . 4  |-  ( ( -oo  = -oo  /\ +oo  = +oo )  -> 
( ( ( -oo  e.  RR  /\ +oo  e.  RR )  /\ -oo  <RR +oo )  \/  ( -oo  = -oo  /\ +oo  = +oo ) ) )
41, 2, 3mp2an 426 . . 3  |-  ( ( ( -oo  e.  RR  /\ +oo  e.  RR )  /\ -oo 
<RR +oo )  \/  ( -oo  = -oo  /\ +oo  = +oo ) )
54orci 736 . 2  |-  ( ( ( ( -oo  e.  RR  /\ +oo  e.  RR )  /\ -oo  <RR +oo )  \/  ( -oo  = -oo  /\ +oo  = +oo )
)  \/  ( ( -oo  e.  RR  /\ +oo  = +oo )  \/  ( -oo  = -oo  /\ +oo  e.  RR ) ) )
6 mnfxr 8199 . . 3  |- -oo  e.  RR*
7 pnfxr 8195 . . 3  |- +oo  e.  RR*
8 ltxr 9967 . . 3  |-  ( ( -oo  e.  RR*  /\ +oo  e.  RR* )  ->  ( -oo  < +oo  <->  ( ( ( ( -oo  e.  RR  /\ +oo  e.  RR )  /\ -oo 
<RR +oo )  \/  ( -oo  = -oo  /\ +oo  = +oo ) )  \/  ( ( -oo  e.  RR  /\ +oo  = +oo )  \/  ( -oo  = -oo  /\ +oo  e.  RR ) ) ) ) )
96, 7, 8mp2an 426 . 2  |-  ( -oo  < +oo  <->  ( ( ( ( -oo  e.  RR  /\ +oo  e.  RR )  /\ -oo 
<RR +oo )  \/  ( -oo  = -oo  /\ +oo  = +oo ) )  \/  ( ( -oo  e.  RR  /\ +oo  = +oo )  \/  ( -oo  = -oo  /\ +oo  e.  RR ) ) ) )
105, 9mpbir 146 1  |- -oo  < +oo
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   class class class wbr 4082   RRcr 7994    <RR cltrr 7999   +oocpnf 8174   -oocmnf 8175   RR*cxr 8176    < clt 8177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182
This theorem is referenced by:  mnfltxr  9978  xrlttr  9987  xrltso  9988  xrlttri3  9989  nltpnft  10006  npnflt  10007  ngtmnft  10009  nmnfgt  10010  xltnegi  10027  xposdif  10074
  Copyright terms: Public domain W3C validator