ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfltpnf Unicode version

Theorem mnfltpnf 9906
Description: Minus infinity is less than plus infinity. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
mnfltpnf  |- -oo  < +oo

Proof of Theorem mnfltpnf
StepHypRef Expression
1 eqid 2204 . . . 4  |- -oo  = -oo
2 eqid 2204 . . . 4  |- +oo  = +oo
3 olc 712 . . . 4  |-  ( ( -oo  = -oo  /\ +oo  = +oo )  -> 
( ( ( -oo  e.  RR  /\ +oo  e.  RR )  /\ -oo  <RR +oo )  \/  ( -oo  = -oo  /\ +oo  = +oo ) ) )
41, 2, 3mp2an 426 . . 3  |-  ( ( ( -oo  e.  RR  /\ +oo  e.  RR )  /\ -oo 
<RR +oo )  \/  ( -oo  = -oo  /\ +oo  = +oo ) )
54orci 732 . 2  |-  ( ( ( ( -oo  e.  RR  /\ +oo  e.  RR )  /\ -oo  <RR +oo )  \/  ( -oo  = -oo  /\ +oo  = +oo )
)  \/  ( ( -oo  e.  RR  /\ +oo  = +oo )  \/  ( -oo  = -oo  /\ +oo  e.  RR ) ) )
6 mnfxr 8128 . . 3  |- -oo  e.  RR*
7 pnfxr 8124 . . 3  |- +oo  e.  RR*
8 ltxr 9896 . . 3  |-  ( ( -oo  e.  RR*  /\ +oo  e.  RR* )  ->  ( -oo  < +oo  <->  ( ( ( ( -oo  e.  RR  /\ +oo  e.  RR )  /\ -oo 
<RR +oo )  \/  ( -oo  = -oo  /\ +oo  = +oo ) )  \/  ( ( -oo  e.  RR  /\ +oo  = +oo )  \/  ( -oo  = -oo  /\ +oo  e.  RR ) ) ) ) )
96, 7, 8mp2an 426 . 2  |-  ( -oo  < +oo  <->  ( ( ( ( -oo  e.  RR  /\ +oo  e.  RR )  /\ -oo 
<RR +oo )  \/  ( -oo  = -oo  /\ +oo  = +oo ) )  \/  ( ( -oo  e.  RR  /\ +oo  = +oo )  \/  ( -oo  = -oo  /\ +oo  e.  RR ) ) ) )
105, 9mpbir 146 1  |- -oo  < +oo
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1372    e. wcel 2175   class class class wbr 4043   RRcr 7923    <RR cltrr 7928   +oocpnf 8103   -oocmnf 8104   RR*cxr 8105    < clt 8106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4680  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111
This theorem is referenced by:  mnfltxr  9907  xrlttr  9916  xrltso  9917  xrlttri3  9918  nltpnft  9935  npnflt  9936  ngtmnft  9938  nmnfgt  9939  xltnegi  9956  xposdif  10003
  Copyright terms: Public domain W3C validator