ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfltpnf Unicode version

Theorem mnfltpnf 9729
Description: Minus infinity is less than plus infinity. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
mnfltpnf  |- -oo  < +oo

Proof of Theorem mnfltpnf
StepHypRef Expression
1 eqid 2170 . . . 4  |- -oo  = -oo
2 eqid 2170 . . . 4  |- +oo  = +oo
3 olc 706 . . . 4  |-  ( ( -oo  = -oo  /\ +oo  = +oo )  -> 
( ( ( -oo  e.  RR  /\ +oo  e.  RR )  /\ -oo  <RR +oo )  \/  ( -oo  = -oo  /\ +oo  = +oo ) ) )
41, 2, 3mp2an 424 . . 3  |-  ( ( ( -oo  e.  RR  /\ +oo  e.  RR )  /\ -oo 
<RR +oo )  \/  ( -oo  = -oo  /\ +oo  = +oo ) )
54orci 726 . 2  |-  ( ( ( ( -oo  e.  RR  /\ +oo  e.  RR )  /\ -oo  <RR +oo )  \/  ( -oo  = -oo  /\ +oo  = +oo )
)  \/  ( ( -oo  e.  RR  /\ +oo  = +oo )  \/  ( -oo  = -oo  /\ +oo  e.  RR ) ) )
6 mnfxr 7963 . . 3  |- -oo  e.  RR*
7 pnfxr 7959 . . 3  |- +oo  e.  RR*
8 ltxr 9719 . . 3  |-  ( ( -oo  e.  RR*  /\ +oo  e.  RR* )  ->  ( -oo  < +oo  <->  ( ( ( ( -oo  e.  RR  /\ +oo  e.  RR )  /\ -oo 
<RR +oo )  \/  ( -oo  = -oo  /\ +oo  = +oo ) )  \/  ( ( -oo  e.  RR  /\ +oo  = +oo )  \/  ( -oo  = -oo  /\ +oo  e.  RR ) ) ) ) )
96, 7, 8mp2an 424 . 2  |-  ( -oo  < +oo  <->  ( ( ( ( -oo  e.  RR  /\ +oo  e.  RR )  /\ -oo 
<RR +oo )  \/  ( -oo  = -oo  /\ +oo  = +oo ) )  \/  ( ( -oo  e.  RR  /\ +oo  = +oo )  \/  ( -oo  = -oo  /\ +oo  e.  RR ) ) ) )
105, 9mpbir 145 1  |- -oo  < +oo
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141   class class class wbr 3987   RRcr 7760    <RR cltrr 7765   +oocpnf 7938   -oocmnf 7939   RR*cxr 7940    < clt 7941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-cnex 7852
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-xp 4615  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946
This theorem is referenced by:  mnfltxr  9730  xrlttr  9739  xrltso  9740  xrlttri3  9741  nltpnft  9758  npnflt  9759  ngtmnft  9761  nmnfgt  9762  xltnegi  9779  xposdif  9826
  Copyright terms: Public domain W3C validator