![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mnfltxr | GIF version |
Description: Minus infinity is less than an extended real that is either real or plus infinity. (Contributed by NM, 2-Feb-2006.) |
Ref | Expression |
---|---|
mnfltxr | ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnflt 9852 | . 2 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
2 | mnfltpnf 9854 | . . 3 ⊢ -∞ < +∞ | |
3 | breq2 4034 | . . 3 ⊢ (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞)) | |
4 | 2, 3 | mpbiri 168 | . 2 ⊢ (𝐴 = +∞ → -∞ < 𝐴) |
5 | 1, 4 | jaoi 717 | 1 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 ℝcr 7873 +∞cpnf 8053 -∞cmnf 8054 < clt 8056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-cnex 7965 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 |
This theorem is referenced by: xrltso 9865 |
Copyright terms: Public domain | W3C validator |