ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfltxr GIF version

Theorem mnfltxr 9915
Description: Minus infinity is less than an extended real that is either real or plus infinity. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
mnfltxr ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴)

Proof of Theorem mnfltxr
StepHypRef Expression
1 mnflt 9912 . 2 (𝐴 ∈ ℝ → -∞ < 𝐴)
2 mnfltpnf 9914 . . 3 -∞ < +∞
3 breq2 4051 . . 3 (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞))
42, 3mpbiri 168 . 2 (𝐴 = +∞ → -∞ < 𝐴)
51, 4jaoi 718 1 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 710   = wceq 1373  wcel 2177   class class class wbr 4047  cr 7931  +∞cpnf 8111  -∞cmnf 8112   < clt 8114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-xp 4685  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119
This theorem is referenced by:  xrltso  9925
  Copyright terms: Public domain W3C validator