ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfltxr GIF version

Theorem mnfltxr 9990
Description: Minus infinity is less than an extended real that is either real or plus infinity. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
mnfltxr ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴)

Proof of Theorem mnfltxr
StepHypRef Expression
1 mnflt 9987 . 2 (𝐴 ∈ ℝ → -∞ < 𝐴)
2 mnfltpnf 9989 . . 3 -∞ < +∞
3 breq2 4087 . . 3 (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞))
42, 3mpbiri 168 . 2 (𝐴 = +∞ → -∞ < 𝐴)
51, 4jaoi 721 1 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 713   = wceq 1395  wcel 2200   class class class wbr 4083  cr 8006  +∞cpnf 8186  -∞cmnf 8187   < clt 8189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194
This theorem is referenced by:  xrltso  10000
  Copyright terms: Public domain W3C validator