![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mnfltxr | GIF version |
Description: Minus infinity is less than an extended real that is either real or plus infinity. (Contributed by NM, 2-Feb-2006.) |
Ref | Expression |
---|---|
mnfltxr | ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnflt 9815 | . 2 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
2 | mnfltpnf 9817 | . . 3 ⊢ -∞ < +∞ | |
3 | breq2 4022 | . . 3 ⊢ (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞)) | |
4 | 2, 3 | mpbiri 168 | . 2 ⊢ (𝐴 = +∞ → -∞ < 𝐴) |
5 | 1, 4 | jaoi 717 | 1 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2160 class class class wbr 4018 ℝcr 7841 +∞cpnf 8020 -∞cmnf 8021 < clt 8023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-cnex 7933 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-xp 4650 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 |
This theorem is referenced by: xrltso 9828 |
Copyright terms: Public domain | W3C validator |