ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfltxr GIF version

Theorem mnfltxr 9818
Description: Minus infinity is less than an extended real that is either real or plus infinity. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
mnfltxr ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴)

Proof of Theorem mnfltxr
StepHypRef Expression
1 mnflt 9815 . 2 (𝐴 ∈ ℝ → -∞ < 𝐴)
2 mnfltpnf 9817 . . 3 -∞ < +∞
3 breq2 4022 . . 3 (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞))
42, 3mpbiri 168 . 2 (𝐴 = +∞ → -∞ < 𝐴)
51, 4jaoi 717 1 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709   = wceq 1364  wcel 2160   class class class wbr 4018  cr 7841  +∞cpnf 8020  -∞cmnf 8021   < clt 8023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-cnex 7933
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-xp 4650  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028
This theorem is referenced by:  xrltso  9828
  Copyright terms: Public domain W3C validator