ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpt0 Unicode version

Theorem mpt0 5418
Description: A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014.)
Assertion
Ref Expression
mpt0  |-  ( x  e.  (/)  |->  A )  =  (/)

Proof of Theorem mpt0
StepHypRef Expression
1 ral0 3566 . . 3  |-  A. x  e.  (/)  A  e.  _V
2 eqid 2206 . . . 4  |-  ( x  e.  (/)  |->  A )  =  ( x  e.  (/)  |->  A )
32fnmpt 5417 . . 3  |-  ( A. x  e.  (/)  A  e. 
_V  ->  ( x  e.  (/)  |->  A )  Fn  (/) )
41, 3ax-mp 5 . 2  |-  ( x  e.  (/)  |->  A )  Fn  (/)
5 fn0 5410 . 2  |-  ( ( x  e.  (/)  |->  A )  Fn  (/)  <->  ( x  e.  (/)  |->  A )  =  (/) )
64, 5mpbi 145 1  |-  ( x  e.  (/)  |->  A )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2177   A.wral 2485   _Vcvv 2773   (/)c0 3464    |-> cmpt 4116    Fn wfn 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-fun 5287  df-fn 5288
This theorem is referenced by:  fmptpr  5794  swrd00g  11135  swrdlend  11144  mulgnn0gsum  13549  gsumfzfsumlem0  14433
  Copyright terms: Public domain W3C validator