ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpti Unicode version

Theorem fnmpti 5387
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fnmpti.1  |-  B  e. 
_V
fnmpti.2  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fnmpti  |-  F  Fn  A
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fnmpti
StepHypRef Expression
1 fnmpti.1 . . 3  |-  B  e. 
_V
21rgenw 2552 . 2  |-  A. x  e.  A  B  e.  _V
3 fnmpti.2 . . 3  |-  F  =  ( x  e.  A  |->  B )
43mptfng 5384 . 2  |-  ( A. x  e.  A  B  e.  _V  <->  F  Fn  A
)
52, 4mpbi 145 1  |-  F  Fn  A
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763    |-> cmpt 4095    Fn wfn 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-fun 5261  df-fn 5262
This theorem is referenced by:  dmmpti  5388  fconst  5454  eufnfv  5794  idref  5804  fo1st  6217  fo2nd  6218  reldm  6246  oafnex  6504  fnoei  6512  oeiexg  6513  mapsnf1o2  6757  nninfctlemfo  12218  1arith  12547  slotslfn  12715  topnfn  12932  fn0g  13044  fnmgp  13504  rlmfn  14035  blfn  14133  fncld  14360  xmetunirn  14620
  Copyright terms: Public domain W3C validator