ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpti Unicode version

Theorem fnmpti 5246
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fnmpti.1  |-  B  e. 
_V
fnmpti.2  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fnmpti  |-  F  Fn  A
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fnmpti
StepHypRef Expression
1 fnmpti.1 . . 3  |-  B  e. 
_V
21rgenw 2485 . 2  |-  A. x  e.  A  B  e.  _V
3 fnmpti.2 . . 3  |-  F  =  ( x  e.  A  |->  B )
43mptfng 5243 . 2  |-  ( A. x  e.  A  B  e.  _V  <->  F  Fn  A
)
52, 4mpbi 144 1  |-  F  Fn  A
Colors of variables: wff set class
Syntax hints:    = wceq 1331    e. wcel 1480   A.wral 2414   _Vcvv 2681    |-> cmpt 3984    Fn wfn 5113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-fun 5120  df-fn 5121
This theorem is referenced by:  dmmpti  5247  fconst  5313  eufnfv  5641  idref  5651  fo1st  6048  fo2nd  6049  reldm  6077  oafnex  6333  fnoei  6341  oeiexg  6342  mapsnf1o2  6583  slotslfn  11974  topnfn  12114  fncld  12256  xmetunirn  12516
  Copyright terms: Public domain W3C validator