ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpti Unicode version

Theorem fnmpti 5300
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fnmpti.1  |-  B  e. 
_V
fnmpti.2  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fnmpti  |-  F  Fn  A
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fnmpti
StepHypRef Expression
1 fnmpti.1 . . 3  |-  B  e. 
_V
21rgenw 2512 . 2  |-  A. x  e.  A  B  e.  _V
3 fnmpti.2 . . 3  |-  F  =  ( x  e.  A  |->  B )
43mptfng 5297 . 2  |-  ( A. x  e.  A  B  e.  _V  <->  F  Fn  A
)
52, 4mpbi 144 1  |-  F  Fn  A
Colors of variables: wff set class
Syntax hints:    = wceq 1335    e. wcel 2128   A.wral 2435   _Vcvv 2712    |-> cmpt 4027    Fn wfn 5167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-br 3968  df-opab 4028  df-mpt 4029  df-id 4255  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-fun 5174  df-fn 5175
This theorem is referenced by:  dmmpti  5301  fconst  5367  eufnfv  5699  idref  5709  fo1st  6107  fo2nd  6108  reldm  6136  oafnex  6393  fnoei  6401  oeiexg  6402  mapsnf1o2  6643  slotslfn  12286  topnfn  12426  fncld  12568  xmetunirn  12828
  Copyright terms: Public domain W3C validator