ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmpti Unicode version

Theorem fnmpti 5406
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fnmpti.1  |-  B  e. 
_V
fnmpti.2  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fnmpti  |-  F  Fn  A
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fnmpti
StepHypRef Expression
1 fnmpti.1 . . 3  |-  B  e. 
_V
21rgenw 2561 . 2  |-  A. x  e.  A  B  e.  _V
3 fnmpti.2 . . 3  |-  F  =  ( x  e.  A  |->  B )
43mptfng 5403 . 2  |-  ( A. x  e.  A  B  e.  _V  <->  F  Fn  A
)
52, 4mpbi 145 1  |-  F  Fn  A
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2176   A.wral 2484   _Vcvv 2772    |-> cmpt 4106    Fn wfn 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-fun 5274  df-fn 5275
This theorem is referenced by:  dmmpti  5407  fconst  5473  eufnfv  5817  idref  5827  fo1st  6245  fo2nd  6246  reldm  6274  oafnex  6532  fnoei  6540  oeiexg  6541  mapsnf1o2  6785  nninfctlemfo  12394  1arith  12723  slotslfn  12891  topnfn  13109  fn0g  13240  fnmgp  13717  rlmfn  14248  blfn  14346  fncld  14603  xmetunirn  14863  nnnninfex  15996  nninfnfiinf  15997
  Copyright terms: Public domain W3C validator