| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnmpti | Unicode version | ||
| Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fnmpti.1 |
|
| fnmpti.2 |
|
| Ref | Expression |
|---|---|
| fnmpti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmpti.1 |
. . 3
| |
| 2 | 1 | rgenw 2585 |
. 2
|
| 3 | fnmpti.2 |
. . 3
| |
| 4 | 3 | mptfng 5449 |
. 2
|
| 5 | 2, 4 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-fun 5320 df-fn 5321 |
| This theorem is referenced by: dmmpti 5453 fconst 5521 eufnfv 5870 idref 5880 fo1st 6303 fo2nd 6304 reldm 6332 oafnex 6590 fnoei 6598 oeiexg 6599 mapsnf1o2 6843 nninfctlemfo 12561 1arith 12890 slotslfn 13058 topnfn 13277 fn0g 13408 fnmgp 13885 rlmfn 14417 blfn 14515 fncld 14772 xmetunirn 15032 nnnninfex 16388 nninfnfiinf 16389 |
| Copyright terms: Public domain | W3C validator |