| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmptpr | Unicode version | ||
| Description: Express a pair function in maps-to notation. (Contributed by Thierry Arnoux, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| fmptpr.1 |
|
| fmptpr.2 |
|
| fmptpr.3 |
|
| fmptpr.4 |
|
| fmptpr.5 |
|
| fmptpr.6 |
|
| Ref | Expression |
|---|---|
| fmptpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 3640 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | mpt0 5405 |
. . . . . 6
| |
| 4 | 3 | uneq1i 3323 |
. . . . 5
|
| 5 | uncom 3317 |
. . . . 5
| |
| 6 | un0 3494 |
. . . . 5
| |
| 7 | 4, 5, 6 | 3eqtri 2230 |
. . . 4
|
| 8 | fmptpr.1 |
. . . . . 6
| |
| 9 | elex 2783 |
. . . . . 6
| |
| 10 | 8, 9 | syl 14 |
. . . . 5
|
| 11 | fmptpr.3 |
. . . . . 6
| |
| 12 | elex 2783 |
. . . . . 6
| |
| 13 | 11, 12 | syl 14 |
. . . . 5
|
| 14 | uncom 3317 |
. . . . . . 7
| |
| 15 | un0 3494 |
. . . . . . 7
| |
| 16 | 14, 15 | eqtr3i 2228 |
. . . . . 6
|
| 17 | 16 | a1i 9 |
. . . . 5
|
| 18 | fmptpr.5 |
. . . . 5
| |
| 19 | 10, 13, 17, 18 | fmptapd 5777 |
. . . 4
|
| 20 | 7, 19 | eqtr3id 2252 |
. . 3
|
| 21 | 20 | uneq1d 3326 |
. 2
|
| 22 | fmptpr.2 |
. . . 4
| |
| 23 | elex 2783 |
. . . 4
| |
| 24 | 22, 23 | syl 14 |
. . 3
|
| 25 | fmptpr.4 |
. . . 4
| |
| 26 | elex 2783 |
. . . 4
| |
| 27 | 25, 26 | syl 14 |
. . 3
|
| 28 | df-pr 3640 |
. . . . 5
| |
| 29 | 28 | eqcomi 2209 |
. . . 4
|
| 30 | 29 | a1i 9 |
. . 3
|
| 31 | fmptpr.6 |
. . 3
| |
| 32 | 24, 27, 30, 31 | fmptapd 5777 |
. 2
|
| 33 | 2, 21, 32 | 3eqtrd 2242 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |