| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmptpr | Unicode version | ||
| Description: Express a pair function in maps-to notation. (Contributed by Thierry Arnoux, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| fmptpr.1 |
|
| fmptpr.2 |
|
| fmptpr.3 |
|
| fmptpr.4 |
|
| fmptpr.5 |
|
| fmptpr.6 |
|
| Ref | Expression |
|---|---|
| fmptpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 3650 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | mpt0 5423 |
. . . . . 6
| |
| 4 | 3 | uneq1i 3331 |
. . . . 5
|
| 5 | uncom 3325 |
. . . . 5
| |
| 6 | un0 3502 |
. . . . 5
| |
| 7 | 4, 5, 6 | 3eqtri 2232 |
. . . 4
|
| 8 | fmptpr.1 |
. . . . . 6
| |
| 9 | elex 2788 |
. . . . . 6
| |
| 10 | 8, 9 | syl 14 |
. . . . 5
|
| 11 | fmptpr.3 |
. . . . . 6
| |
| 12 | elex 2788 |
. . . . . 6
| |
| 13 | 11, 12 | syl 14 |
. . . . 5
|
| 14 | uncom 3325 |
. . . . . . 7
| |
| 15 | un0 3502 |
. . . . . . 7
| |
| 16 | 14, 15 | eqtr3i 2230 |
. . . . . 6
|
| 17 | 16 | a1i 9 |
. . . . 5
|
| 18 | fmptpr.5 |
. . . . 5
| |
| 19 | 10, 13, 17, 18 | fmptapd 5798 |
. . . 4
|
| 20 | 7, 19 | eqtr3id 2254 |
. . 3
|
| 21 | 20 | uneq1d 3334 |
. 2
|
| 22 | fmptpr.2 |
. . . 4
| |
| 23 | elex 2788 |
. . . 4
| |
| 24 | 22, 23 | syl 14 |
. . 3
|
| 25 | fmptpr.4 |
. . . 4
| |
| 26 | elex 2788 |
. . . 4
| |
| 27 | 25, 26 | syl 14 |
. . 3
|
| 28 | df-pr 3650 |
. . . . 5
| |
| 29 | 28 | eqcomi 2211 |
. . . 4
|
| 30 | 29 | a1i 9 |
. . 3
|
| 31 | fmptpr.6 |
. . 3
| |
| 32 | 24, 27, 30, 31 | fmptapd 5798 |
. 2
|
| 33 | 2, 21, 32 | 3eqtrd 2244 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |