| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpt0 | GIF version | ||
| Description: A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| mpt0 | ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 3573 | . . 3 ⊢ ∀𝑥 ∈ ∅ 𝐴 ∈ V | |
| 2 | eqid 2209 | . . . 4 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = (𝑥 ∈ ∅ ↦ 𝐴) | |
| 3 | 2 | fnmpt 5426 | . . 3 ⊢ (∀𝑥 ∈ ∅ 𝐴 ∈ V → (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ |
| 5 | fn0 5419 | . 2 ⊢ ((𝑥 ∈ ∅ ↦ 𝐴) Fn ∅ ↔ (𝑥 ∈ ∅ ↦ 𝐴) = ∅) | |
| 6 | 4, 5 | mpbi 145 | 1 ⊢ (𝑥 ∈ ∅ ↦ 𝐴) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∈ wcel 2180 ∀wral 2488 Vcvv 2779 ∅c0 3471 ↦ cmpt 4124 Fn wfn 5289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-fun 5296 df-fn 5297 |
| This theorem is referenced by: fmptpr 5804 swrd00g 11147 swrdlend 11156 mulgnn0gsum 13631 gsumfzfsumlem0 14515 |
| Copyright terms: Public domain | W3C validator |