ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt12f Unicode version

Theorem cnmpt12f 14465
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt11.a  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
cnmpt1t.b  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )
cnmpt12f.f  |-  ( ph  ->  F  e.  ( ( K  tX  L )  Cn  M ) )
Assertion
Ref Expression
cnmpt12f  |-  ( ph  ->  ( x  e.  X  |->  ( A F B ) )  e.  ( J  Cn  M ) )
Distinct variable groups:    x, F    ph, x    x, J    x, M    x, X    x, K    x, L
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem cnmpt12f
StepHypRef Expression
1 df-ov 5922 . . 3  |-  ( A F B )  =  ( F `  <. A ,  B >. )
21mpteq2i 4117 . 2  |-  ( x  e.  X  |->  ( A F B ) )  =  ( x  e.  X  |->  ( F `  <. A ,  B >. ) )
3 cnmptid.j . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
4 cnmpt11.a . . . 4  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
5 cnmpt1t.b . . . 4  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )
63, 4, 5cnmpt1t 14464 . . 3  |-  ( ph  ->  ( x  e.  X  |-> 
<. A ,  B >. )  e.  ( J  Cn  ( K  tX  L ) ) )
7 cnmpt12f.f . . 3  |-  ( ph  ->  F  e.  ( ( K  tX  L )  Cn  M ) )
83, 6, 7cnmpt11f 14463 . 2  |-  ( ph  ->  ( x  e.  X  |->  ( F `  <. A ,  B >. )
)  e.  ( J  Cn  M ) )
92, 8eqeltrid 2280 1  |-  ( ph  ->  ( x  e.  X  |->  ( A F B ) )  e.  ( J  Cn  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   <.cop 3622    |-> cmpt 4091   ` cfv 5255  (class class class)co 5919  TopOnctopon 14189    Cn ccn 14364    tX ctx 14431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-topgen 12874  df-top 14177  df-topon 14190  df-bases 14222  df-cn 14367  df-tx 14432
This theorem is referenced by:  cnmpt12  14466  fsumcncntop  14746  expcn  14748  cncfmpt2fcntop  14778
  Copyright terms: Public domain W3C validator