ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt12f Unicode version

Theorem cnmpt12f 14454
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt11.a  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
cnmpt1t.b  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )
cnmpt12f.f  |-  ( ph  ->  F  e.  ( ( K  tX  L )  Cn  M ) )
Assertion
Ref Expression
cnmpt12f  |-  ( ph  ->  ( x  e.  X  |->  ( A F B ) )  e.  ( J  Cn  M ) )
Distinct variable groups:    x, F    ph, x    x, J    x, M    x, X    x, K    x, L
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem cnmpt12f
StepHypRef Expression
1 df-ov 5921 . . 3  |-  ( A F B )  =  ( F `  <. A ,  B >. )
21mpteq2i 4116 . 2  |-  ( x  e.  X  |->  ( A F B ) )  =  ( x  e.  X  |->  ( F `  <. A ,  B >. ) )
3 cnmptid.j . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
4 cnmpt11.a . . . 4  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
5 cnmpt1t.b . . . 4  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )
63, 4, 5cnmpt1t 14453 . . 3  |-  ( ph  ->  ( x  e.  X  |-> 
<. A ,  B >. )  e.  ( J  Cn  ( K  tX  L ) ) )
7 cnmpt12f.f . . 3  |-  ( ph  ->  F  e.  ( ( K  tX  L )  Cn  M ) )
83, 6, 7cnmpt11f 14452 . 2  |-  ( ph  ->  ( x  e.  X  |->  ( F `  <. A ,  B >. )
)  e.  ( J  Cn  M ) )
92, 8eqeltrid 2280 1  |-  ( ph  ->  ( x  e.  X  |->  ( A F B ) )  e.  ( J  Cn  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   <.cop 3621    |-> cmpt 4090   ` cfv 5254  (class class class)co 5918  TopOnctopon 14178    Cn ccn 14353    tX ctx 14420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-topgen 12871  df-top 14166  df-topon 14179  df-bases 14211  df-cn 14356  df-tx 14421
This theorem is referenced by:  cnmpt12  14455  fsumcncntop  14724  cncfmpt2fcntop  14753
  Copyright terms: Public domain W3C validator