Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  exmidsbthr Unicode version

Theorem exmidsbthr 16350
Description: The Schroeder-Bernstein Theorem implies excluded middle. Theorem 1 of [PradicBrown2022], p. 1. (Contributed by Jim Kingdon, 11-Aug-2022.)
Assertion
Ref Expression
exmidsbthr  |-  ( A. x A. y ( ( x  ~<_  y  /\  y  ~<_  x )  ->  x  ~~  y )  -> EXMID )
Distinct variable group:    x, y

Proof of Theorem exmidsbthr
Dummy variables  i  j  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2236 . . . . 5  |-  ( j  =  i  ->  (
j  =  (/)  <->  i  =  (/) ) )
2 unieq 3896 . . . . . 6  |-  ( j  =  i  ->  U. j  =  U. i )
32fveq2d 5630 . . . . 5  |-  ( j  =  i  ->  (
p `  U. j )  =  ( p `  U. i ) )
41, 3ifbieq2d 3627 . . . 4  |-  ( j  =  i  ->  if ( j  =  (/) ,  1o ,  ( p `
 U. j ) )  =  if ( i  =  (/) ,  1o ,  ( p `  U. i ) ) )
54cbvmptv 4179 . . 3  |-  ( j  e.  om  |->  if ( j  =  (/) ,  1o ,  ( p `  U. j ) ) )  =  ( i  e. 
om  |->  if ( i  =  (/) ,  1o , 
( p `  U. i ) ) )
65mpteq2i 4170 . 2  |-  ( p  e.  |->  ( j  e.  om  |->  if ( j  =  (/) ,  1o ,  ( p `
 U. j ) ) ) )  =  ( p  e. 
|->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) )
76exmidsbthrlem 16349 1  |-  ( A. x A. y ( ( x  ~<_  y  /\  y  ~<_  x )  ->  x  ~~  y )  -> EXMID )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1393    = wceq 1395   (/)c0 3491   ifcif 3602   U.cuni 3887   class class class wbr 4082    |-> cmpt 4144  EXMIDwem 4277   omcom 4681   ` cfv 5317   1oc1o 6553    ~~ cen 6883    ~<_ cdom 6884  ℕxnninf 7282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-exmid 4278  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-1o 6560  df-2o 6561  df-map 6795  df-en 6886  df-dom 6887  df-dju 7201  df-inl 7210  df-inr 7211  df-case 7247  df-nninf 7283  df-omni 7298
This theorem is referenced by:  exmidsbth  16351
  Copyright terms: Public domain W3C validator