Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  exmidsbthr Unicode version

Theorem exmidsbthr 15583
Description: The Schroeder-Bernstein Theorem implies excluded middle. Theorem 1 of [PradicBrown2022], p. 1. (Contributed by Jim Kingdon, 11-Aug-2022.)
Assertion
Ref Expression
exmidsbthr  |-  ( A. x A. y ( ( x  ~<_  y  /\  y  ~<_  x )  ->  x  ~~  y )  -> EXMID )
Distinct variable group:    x, y

Proof of Theorem exmidsbthr
Dummy variables  i  j  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2200 . . . . 5  |-  ( j  =  i  ->  (
j  =  (/)  <->  i  =  (/) ) )
2 unieq 3845 . . . . . 6  |-  ( j  =  i  ->  U. j  =  U. i )
32fveq2d 5559 . . . . 5  |-  ( j  =  i  ->  (
p `  U. j )  =  ( p `  U. i ) )
41, 3ifbieq2d 3582 . . . 4  |-  ( j  =  i  ->  if ( j  =  (/) ,  1o ,  ( p `
 U. j ) )  =  if ( i  =  (/) ,  1o ,  ( p `  U. i ) ) )
54cbvmptv 4126 . . 3  |-  ( j  e.  om  |->  if ( j  =  (/) ,  1o ,  ( p `  U. j ) ) )  =  ( i  e. 
om  |->  if ( i  =  (/) ,  1o , 
( p `  U. i ) ) )
65mpteq2i 4117 . 2  |-  ( p  e.  |->  ( j  e.  om  |->  if ( j  =  (/) ,  1o ,  ( p `
 U. j ) ) ) )  =  ( p  e. 
|->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) )
76exmidsbthrlem 15582 1  |-  ( A. x A. y ( ( x  ~<_  y  /\  y  ~<_  x )  ->  x  ~~  y )  -> EXMID )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364   (/)c0 3447   ifcif 3558   U.cuni 3836   class class class wbr 4030    |-> cmpt 4091  EXMIDwem 4224   omcom 4623   ` cfv 5255   1oc1o 6464    ~~ cen 6794    ~<_ cdom 6795  ℕxnninf 7180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-exmid 4225  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-1o 6471  df-2o 6472  df-map 6706  df-en 6797  df-dom 6798  df-dju 7099  df-inl 7108  df-inr 7109  df-case 7145  df-nninf 7181  df-omni 7196
This theorem is referenced by:  exmidsbth  15584
  Copyright terms: Public domain W3C validator