Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  exmidsbthr Unicode version

Theorem exmidsbthr 14774
Description: The Schroeder-Bernstein Theorem implies excluded middle. Theorem 1 of [PradicBrown2022], p. 1. (Contributed by Jim Kingdon, 11-Aug-2022.)
Assertion
Ref Expression
exmidsbthr  |-  ( A. x A. y ( ( x  ~<_  y  /\  y  ~<_  x )  ->  x  ~~  y )  -> EXMID )
Distinct variable group:    x, y

Proof of Theorem exmidsbthr
Dummy variables  i  j  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2184 . . . . 5  |-  ( j  =  i  ->  (
j  =  (/)  <->  i  =  (/) ) )
2 unieq 3819 . . . . . 6  |-  ( j  =  i  ->  U. j  =  U. i )
32fveq2d 5520 . . . . 5  |-  ( j  =  i  ->  (
p `  U. j )  =  ( p `  U. i ) )
41, 3ifbieq2d 3559 . . . 4  |-  ( j  =  i  ->  if ( j  =  (/) ,  1o ,  ( p `
 U. j ) )  =  if ( i  =  (/) ,  1o ,  ( p `  U. i ) ) )
54cbvmptv 4100 . . 3  |-  ( j  e.  om  |->  if ( j  =  (/) ,  1o ,  ( p `  U. j ) ) )  =  ( i  e. 
om  |->  if ( i  =  (/) ,  1o , 
( p `  U. i ) ) )
65mpteq2i 4091 . 2  |-  ( p  e.  |->  ( j  e.  om  |->  if ( j  =  (/) ,  1o ,  ( p `
 U. j ) ) ) )  =  ( p  e. 
|->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) )
76exmidsbthrlem 14773 1  |-  ( A. x A. y ( ( x  ~<_  y  /\  y  ~<_  x )  ->  x  ~~  y )  -> EXMID )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1351    = wceq 1353   (/)c0 3423   ifcif 3535   U.cuni 3810   class class class wbr 4004    |-> cmpt 4065  EXMIDwem 4195   omcom 4590   ` cfv 5217   1oc1o 6410    ~~ cen 6738    ~<_ cdom 6739  ℕxnninf 7118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-exmid 4196  df-id 4294  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-1o 6417  df-2o 6418  df-map 6650  df-en 6741  df-dom 6742  df-dju 7037  df-inl 7046  df-inr 7047  df-case 7083  df-nninf 7119  df-omni 7133
This theorem is referenced by:  exmidsbth  14775
  Copyright terms: Public domain W3C validator