ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eirraplem Unicode version

Theorem eirraplem 11923
Description: Lemma for eirrap 11924. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 5-Jan-2022.)
Hypotheses
Ref Expression
eirr.1  |-  F  =  ( n  e.  NN0  |->  ( 1  /  ( ! `  n )
) )
eirr.2  |-  ( ph  ->  P  e.  ZZ )
eirr.3  |-  ( ph  ->  Q  e.  NN )
Assertion
Ref Expression
eirraplem  |-  ( ph  ->  _e #  ( P  /  Q ) )
Distinct variable group:    Q, n
Allowed substitution hints:    ph( n)    P( n)    F( n)

Proof of Theorem eirraplem
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 esum 11808 . . . . . . . . . . 11  |-  _e  =  sum_ k  e.  NN0  (
1  /  ( ! `
 k ) )
2 faccl 10809 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
32nnrecred 9031 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( 1  /  ( ! `  k ) )  e.  RR )
4 fveq2 5555 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  ( ! `  n )  =  ( ! `  k ) )
54oveq2d 5935 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
1  /  ( ! `
 n ) )  =  ( 1  / 
( ! `  k
) ) )
6 eirr.1 . . . . . . . . . . . . . 14  |-  F  =  ( n  e.  NN0  |->  ( 1  /  ( ! `  n )
) )
75, 6fvmptg 5634 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  ( 1  /  ( ! `  k )
)  e.  RR )  ->  ( F `  k )  =  ( 1  /  ( ! `
 k ) ) )
83, 7mpdan 421 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( F `
 k )  =  ( 1  /  ( ! `  k )
) )
98sumeq2i 11510 . . . . . . . . . . 11  |-  sum_ k  e.  NN0  ( F `  k )  =  sum_ k  e.  NN0  ( 1  /  ( ! `  k ) )
101, 9eqtr4i 2217 . . . . . . . . . 10  |-  _e  =  sum_ k  e.  NN0  ( F `  k )
11 nn0uz 9630 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
12 eqid 2193 . . . . . . . . . . 11  |-  ( ZZ>= `  ( Q  +  1
) )  =  (
ZZ>= `  ( Q  + 
1 ) )
13 eirr.3 . . . . . . . . . . . . 13  |-  ( ph  ->  Q  e.  NN )
1413peano2nnd 8999 . . . . . . . . . . . 12  |-  ( ph  ->  ( Q  +  1 )  e.  NN )
1514nnnn0d 9296 . . . . . . . . . . 11  |-  ( ph  ->  ( Q  +  1 )  e.  NN0 )
16 eqidd 2194 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( F `  k ) )
17 ax-1cn 7967 . . . . . . . . . . . . . 14  |-  1  e.  CC
18 nn0z 9340 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN0  ->  n  e.  ZZ )
19 1exp 10642 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ZZ  ->  (
1 ^ n )  =  1 )
2018, 19syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN0  ->  ( 1 ^ n )  =  1 )
2120oveq1d 5934 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN0  ->  ( ( 1 ^ n )  /  ( ! `  n ) )  =  ( 1  /  ( ! `  n )
) )
2221mpteq2ia 4116 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN0  |->  ( ( 1 ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( 1  / 
( ! `  n
) ) )
236, 22eqtr4i 2217 . . . . . . . . . . . . . . 15  |-  F  =  ( n  e.  NN0  |->  ( ( 1 ^ n )  /  ( ! `  n )
) )
2423eftvalcn 11803 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  =  ( ( 1 ^ k )  /  ( ! `  k ) ) )
2517, 24mpan 424 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( F `
 k )  =  ( ( 1 ^ k )  /  ( ! `  k )
) )
2625adantl 277 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( ( 1 ^ k
)  /  ( ! `
 k ) ) )
2717a1i 9 . . . . . . . . . . . . 13  |-  ( ph  ->  1  e.  CC )
28 eftcl 11800 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  k  e.  NN0 )  -> 
( ( 1 ^ k )  /  ( ! `  k )
)  e.  CC )
2927, 28sylan 283 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
1 ^ k )  /  ( ! `  k ) )  e.  CC )
3026, 29eqeltrd 2270 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  CC )
3123efcllem 11805 . . . . . . . . . . . 12  |-  ( 1  e.  CC  ->  seq 0 (  +  ,  F )  e.  dom  ~~>  )
3227, 31syl 14 . . . . . . . . . . 11  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
dom 
~~>  )
3311, 12, 15, 16, 30, 32isumsplit 11637 . . . . . . . . . 10  |-  ( ph  -> 
sum_ k  e.  NN0  ( F `  k )  =  ( sum_ k  e.  ( 0 ... (
( Q  +  1 )  -  1 ) ) ( F `  k )  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) ) )
3410, 33eqtrid 2238 . . . . . . . . 9  |-  ( ph  ->  _e  =  ( sum_ k  e.  ( 0 ... ( ( Q  +  1 )  - 
1 ) ) ( F `  k )  +  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
3513nncnd 8998 . . . . . . . . . . . . 13  |-  ( ph  ->  Q  e.  CC )
36 pncan 8227 . . . . . . . . . . . . 13  |-  ( ( Q  e.  CC  /\  1  e.  CC )  ->  ( ( Q  + 
1 )  -  1 )  =  Q )
3735, 17, 36sylancl 413 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( Q  + 
1 )  -  1 )  =  Q )
3837oveq2d 5935 . . . . . . . . . . 11  |-  ( ph  ->  ( 0 ... (
( Q  +  1 )  -  1 ) )  =  ( 0 ... Q ) )
3938sumeq1d 11512 . . . . . . . . . 10  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( ( Q  +  1 )  -  1 ) ) ( F `  k
)  =  sum_ k  e.  ( 0 ... Q
) ( F `  k ) )
4039oveq1d 5934 . . . . . . . . 9  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( ( Q  +  1 )  -  1 ) ) ( F `  k
)  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )  =  (
sum_ k  e.  ( 0 ... Q ) ( F `  k
)  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) ) )
4134, 40eqtrd 2226 . . . . . . . 8  |-  ( ph  ->  _e  =  ( sum_ k  e.  ( 0 ... Q ) ( F `  k )  +  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
4241oveq1d 5934 . . . . . . 7  |-  ( ph  ->  ( _e  -  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  =  ( (
sum_ k  e.  ( 0 ... Q ) ( F `  k
)  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )  -  sum_ k  e.  ( 0 ... Q ) ( F `  k ) ) )
43 0zd 9332 . . . . . . . . . 10  |-  ( ph  ->  0  e.  ZZ )
4413nnzd 9441 . . . . . . . . . 10  |-  ( ph  ->  Q  e.  ZZ )
4543, 44fzfigd 10505 . . . . . . . . 9  |-  ( ph  ->  ( 0 ... Q
)  e.  Fin )
46 elfznn0 10183 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... Q )  ->  k  e.  NN0 )
4746, 30sylan2 286 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( F `  k )  e.  CC )
4845, 47fsumcl 11546 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( 0 ... Q ) ( F `  k
)  e.  CC )
498adantl 277 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( 1  /  ( ! `
 k ) ) )
502adantl 277 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  NN )
5150nnrpd 9763 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  RR+ )
5251rpreccld 9776 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 1  /  ( ! `  k ) )  e.  RR+ )
5349, 52eqeltrd 2270 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  RR+ )
5411, 12, 15, 16, 53, 32isumrpcl 11640 . . . . . . . . . 10  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR+ )
5554rpred 9765 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR )
5655recnd 8050 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  CC )
5748, 56pncan2d 8334 . . . . . . 7  |-  ( ph  ->  ( ( sum_ k  e.  ( 0 ... Q
) ( F `  k )  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  -  sum_ k  e.  ( 0 ... Q ) ( F `  k
) )  =  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )
5842, 57eqtrd 2226 . . . . . 6  |-  ( ph  ->  ( _e  -  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  =  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )
5958oveq2d 5935 . . . . 5  |-  ( ph  ->  ( ( ! `  Q )  x.  (
_e  -  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) )  =  ( ( ! `
 Q )  x. 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
6013nnnn0d 9296 . . . . . . . 8  |-  ( ph  ->  Q  e.  NN0 )
6160faccld 10810 . . . . . . 7  |-  ( ph  ->  ( ! `  Q
)  e.  NN )
6261nncnd 8998 . . . . . 6  |-  ( ph  ->  ( ! `  Q
)  e.  CC )
63 ere 11816 . . . . . . . 8  |-  _e  e.  RR
6463recni 8033 . . . . . . 7  |-  _e  e.  CC
6564a1i 9 . . . . . 6  |-  ( ph  ->  _e  e.  CC )
6662, 65, 48subdid 8435 . . . . 5  |-  ( ph  ->  ( ( ! `  Q )  x.  (
_e  -  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) )  =  ( ( ( ! `  Q )  x.  _e )  -  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) ) ) )
6759, 66eqtr3d 2228 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  =  ( ( ( ! `  Q )  x.  _e )  -  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) ) ) )
6861nnrpd 9763 . . . . . . 7  |-  ( ph  ->  ( ! `  Q
)  e.  RR+ )
6968, 54rpmulcld 9782 . . . . . 6  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  e.  RR+ )
7069rpred 9765 . . . . 5  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  e.  RR )
71 eirr.2 . . . . . . . . 9  |-  ( ph  ->  P  e.  ZZ )
7271zcnd 9443 . . . . . . . 8  |-  ( ph  ->  P  e.  CC )
7313nnap0d 9030 . . . . . . . 8  |-  ( ph  ->  Q #  0 )
7462, 72, 35, 73div12apd 8848 . . . . . . 7  |-  ( ph  ->  ( ( ! `  Q )  x.  ( P  /  Q ) )  =  ( P  x.  ( ( ! `  Q )  /  Q
) ) )
7513nnred 8997 . . . . . . . . . . 11  |-  ( ph  ->  Q  e.  RR )
7675leidd 8535 . . . . . . . . . 10  |-  ( ph  ->  Q  <_  Q )
77 facdiv 10812 . . . . . . . . . 10  |-  ( ( Q  e.  NN0  /\  Q  e.  NN  /\  Q  <_  Q )  ->  (
( ! `  Q
)  /  Q )  e.  NN )
7860, 13, 76, 77syl3anc 1249 . . . . . . . . 9  |-  ( ph  ->  ( ( ! `  Q )  /  Q
)  e.  NN )
7978nnzd 9441 . . . . . . . 8  |-  ( ph  ->  ( ( ! `  Q )  /  Q
)  e.  ZZ )
8071, 79zmulcld 9448 . . . . . . 7  |-  ( ph  ->  ( P  x.  (
( ! `  Q
)  /  Q ) )  e.  ZZ )
8174, 80eqeltrd 2270 . . . . . 6  |-  ( ph  ->  ( ( ! `  Q )  x.  ( P  /  Q ) )  e.  ZZ )
8245, 62, 47fsummulc2 11594 . . . . . . 7  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  =  sum_ k  e.  ( 0 ... Q
) ( ( ! `
 Q )  x.  ( F `  k
) ) )
8346adantl 277 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  k  e.  NN0 )
8483, 8syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( F `  k )  =  ( 1  / 
( ! `  k
) ) )
8584oveq2d 5935 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  =  ( ( ! `
 Q )  x.  ( 1  /  ( ! `  k )
) ) )
8662adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  Q )  e.  CC )
8746, 50sylan2 286 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  k )  e.  NN )
8887nncnd 8998 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  k )  e.  CC )
8987nnap0d 9030 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  k ) #  0 )
9086, 88, 89divrecapd 8814 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  /  ( ! `
 k ) )  =  ( ( ! `
 Q )  x.  ( 1  /  ( ! `  k )
) ) )
9185, 90eqtr4d 2229 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  =  ( ( ! `
 Q )  / 
( ! `  k
) ) )
92 permnn 10845 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... Q )  ->  (
( ! `  Q
)  /  ( ! `
 k ) )  e.  NN )
9392adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  /  ( ! `
 k ) )  e.  NN )
9491, 93eqeltrd 2270 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  e.  NN )
9594nnzd 9441 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  e.  ZZ )
9645, 95fsumzcl 11548 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( 0 ... Q ) ( ( ! `  Q )  x.  ( F `  k )
)  e.  ZZ )
9782, 96eqeltrd 2270 . . . . . 6  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  e.  ZZ )
9881, 97zsubcld 9447 . . . . 5  |-  ( ph  ->  ( ( ( ! `
 Q )  x.  ( P  /  Q
) )  -  (
( ! `  Q
)  x.  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) )  e.  ZZ )
9969rpgt0d 9768 . . . . 5  |-  ( ph  ->  0  <  ( ( ! `  Q )  x.  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
10014peano2nnd 8999 . . . . . . . . . 10  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  e.  NN )
101100nnred 8997 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  e.  RR )
10215faccld 10810 . . . . . . . . . 10  |-  ( ph  ->  ( ! `  ( Q  +  1 ) )  e.  NN )
103102, 14nnmulcld 9033 . . . . . . . . 9  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) )  e.  NN )
104101, 103nndivred 9034 . . . . . . . 8  |-  ( ph  ->  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) )  e.  RR )
10561nnrecred 9031 . . . . . . . 8  |-  ( ph  ->  ( 1  /  ( ! `  Q )
)  e.  RR )
106 abs1 11219 . . . . . . . . . . . . . 14  |-  ( abs `  1 )  =  1
107106oveq1i 5929 . . . . . . . . . . . . 13  |-  ( ( abs `  1 ) ^ n )  =  ( 1 ^ n
)
108107oveq1i 5929 . . . . . . . . . . . 12  |-  ( ( ( abs `  1
) ^ n )  /  ( ! `  n ) )  =  ( ( 1 ^ n )  /  ( ! `  n )
)
109108mpteq2i 4117 . . . . . . . . . . 11  |-  ( n  e.  NN0  |->  ( ( ( abs `  1
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( 1 ^ n )  / 
( ! `  n
) ) )
11023, 109eqtr4i 2217 . . . . . . . . . 10  |-  F  =  ( n  e.  NN0  |->  ( ( ( abs `  1 ) ^
n )  /  ( ! `  n )
) )
111 eqid 2193 . . . . . . . . . 10  |-  ( n  e.  NN0  |->  ( ( ( ( abs `  1
) ^ ( Q  +  1 ) )  /  ( ! `  ( Q  +  1
) ) )  x.  ( ( 1  / 
( ( Q  + 
1 )  +  1 ) ) ^ n
) ) )  =  ( n  e.  NN0  |->  ( ( ( ( abs `  1 ) ^ ( Q  + 
1 ) )  / 
( ! `  ( Q  +  1 ) ) )  x.  (
( 1  /  (
( Q  +  1 )  +  1 ) ) ^ n ) ) )
112 1le1 8593 . . . . . . . . . . . 12  |-  1  <_  1
113106, 112eqbrtri 4051 . . . . . . . . . . 11  |-  ( abs `  1 )  <_ 
1
114113a1i 9 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  1
)  <_  1 )
11523, 110, 111, 14, 27, 114eftlub 11836 . . . . . . . . 9  |-  ( ph  ->  ( abs `  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  <_  ( ( ( abs `  1 ) ^ ( Q  + 
1 ) )  x.  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) ) ) )
11654rprege0d 9773 . . . . . . . . . 10  |-  ( ph  ->  ( sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR  /\  0  <_ 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
117 absid 11218 . . . . . . . . . 10  |-  ( (
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR  /\  0  <_ 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  ->  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  =  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )
118116, 117syl 14 . . . . . . . . 9  |-  ( ph  ->  ( abs `  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  =  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )
119106oveq1i 5929 . . . . . . . . . . . 12  |-  ( ( abs `  1 ) ^ ( Q  + 
1 ) )  =  ( 1 ^ ( Q  +  1 ) )
12014nnzd 9441 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Q  +  1 )  e.  ZZ )
121 1exp 10642 . . . . . . . . . . . . 13  |-  ( ( Q  +  1 )  e.  ZZ  ->  (
1 ^ ( Q  +  1 ) )  =  1 )
122120, 121syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1 ^ ( Q  +  1 ) )  =  1 )
123119, 122eqtrid 2238 . . . . . . . . . . 11  |-  ( ph  ->  ( ( abs `  1
) ^ ( Q  +  1 ) )  =  1 )
124123oveq1d 5934 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( abs `  1 ) ^
( Q  +  1 ) )  x.  (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  =  ( 1  x.  ( ( ( Q  +  1 )  +  1 )  / 
( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) ) ) ) )
125104recnd 8050 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) )  e.  CC )
126125mulid2d 8040 . . . . . . . . . 10  |-  ( ph  ->  ( 1  x.  (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  =  ( ( ( Q  +  1 )  +  1 )  /  ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) ) ) )
127124, 126eqtrd 2226 . . . . . . . . 9  |-  ( ph  ->  ( ( ( abs `  1 ) ^
( Q  +  1 ) )  x.  (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  =  ( ( ( Q  +  1 )  +  1 )  /  ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) ) ) )
128115, 118, 1273brtr3d 4061 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  <_  ( ( ( Q  +  1 )  +  1 )  / 
( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) ) ) )
12914nnred 8997 . . . . . . . . . . . 12  |-  ( ph  ->  ( Q  +  1 )  e.  RR )
130129, 129readdcld 8051 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  + 
1 )  +  ( Q  +  1 ) )  e.  RR )
131129, 129remulcld 8052 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  + 
1 )  x.  ( Q  +  1 ) )  e.  RR )
132 1red 8036 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  RR )
13313nnge1d 9027 . . . . . . . . . . . . 13  |-  ( ph  ->  1  <_  Q )
134 1nn 8995 . . . . . . . . . . . . . 14  |-  1  e.  NN
135 nnleltp1 9379 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  NN  /\  Q  e.  NN )  ->  ( 1  <_  Q  <->  1  <  ( Q  + 
1 ) ) )
136134, 13, 135sylancr 414 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1  <_  Q  <->  1  <  ( Q  + 
1 ) ) )
137133, 136mpbid 147 . . . . . . . . . . . 12  |-  ( ph  ->  1  <  ( Q  +  1 ) )
138132, 129, 129, 137ltadd2dd 8443 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  <  ( ( Q  +  1 )  +  ( Q  + 
1 ) ) )
13914nncnd 8998 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Q  +  1 )  e.  CC )
1401392timesd 9228 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  x.  ( Q  +  1 ) )  =  ( ( Q  +  1 )  +  ( Q  + 
1 ) ) )
141 df-2 9043 . . . . . . . . . . . . . 14  |-  2  =  ( 1  +  1 )
142132, 75, 132, 133leadd1dd 8580 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1  +  1 )  <_  ( Q  +  1 ) )
143141, 142eqbrtrid 4065 . . . . . . . . . . . . 13  |-  ( ph  ->  2  <_  ( Q  +  1 ) )
144 2re 9054 . . . . . . . . . . . . . . 15  |-  2  e.  RR
145144a1i 9 . . . . . . . . . . . . . 14  |-  ( ph  ->  2  e.  RR )
14614nngt0d 9028 . . . . . . . . . . . . . 14  |-  ( ph  ->  0  <  ( Q  +  1 ) )
147 lemul1 8614 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  RR  /\  ( Q  +  1
)  e.  RR  /\  ( ( Q  + 
1 )  e.  RR  /\  0  <  ( Q  +  1 ) ) )  ->  ( 2  <_  ( Q  + 
1 )  <->  ( 2  x.  ( Q  + 
1 ) )  <_ 
( ( Q  + 
1 )  x.  ( Q  +  1 ) ) ) )
148145, 129, 129, 146, 147syl112anc 1253 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2  <_  ( Q  +  1 )  <-> 
( 2  x.  ( Q  +  1 ) )  <_  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) ) )
149143, 148mpbid 147 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  x.  ( Q  +  1 ) )  <_  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) )
150140, 149eqbrtrrd 4054 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  + 
1 )  +  ( Q  +  1 ) )  <_  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) )
151101, 130, 131, 138, 150ltletrd 8444 . . . . . . . . . 10  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  <  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) )
152 facp1 10804 . . . . . . . . . . . . . . 15  |-  ( Q  e.  NN0  ->  ( ! `
 ( Q  + 
1 ) )  =  ( ( ! `  Q )  x.  ( Q  +  1 ) ) )
15360, 152syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ! `  ( Q  +  1 ) )  =  ( ( ! `  Q )  x.  ( Q  + 
1 ) ) )
154153oveq1d 5934 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  /  ( ! `  Q )
)  =  ( ( ( ! `  Q
)  x.  ( Q  +  1 ) )  /  ( ! `  Q ) ) )
155102nncnd 8998 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ! `  ( Q  +  1 ) )  e.  CC )
15661nnap0d 9030 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ! `  Q
) #  0 )
157155, 62, 156divrecapd 8814 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  /  ( ! `  Q )
)  =  ( ( ! `  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
158139, 62, 156divcanap3d 8816 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ! `
 Q )  x.  ( Q  +  1 ) )  /  ( ! `  Q )
)  =  ( Q  +  1 ) )
159154, 157, 1583eqtr3rd 2235 . . . . . . . . . . . 12  |-  ( ph  ->  ( Q  +  1 )  =  ( ( ! `  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
160159oveq1d 5934 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  + 
1 )  x.  ( Q  +  1 ) )  =  ( ( ( ! `  ( Q  +  1 ) )  x.  ( 1  /  ( ! `  Q ) ) )  x.  ( Q  + 
1 ) ) )
161105recnd 8050 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  /  ( ! `  Q )
)  e.  CC )
162155, 161, 139mul32d 8174 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ! `
 ( Q  + 
1 ) )  x.  ( 1  /  ( ! `  Q )
) )  x.  ( Q  +  1 ) )  =  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
163160, 162eqtrd 2226 . . . . . . . . . 10  |-  ( ph  ->  ( ( Q  + 
1 )  x.  ( Q  +  1 ) )  =  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
164151, 163breqtrd 4056 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  <  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
165103nnred 8997 . . . . . . . . . 10  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) )  e.  RR )
166103nngt0d 9028 . . . . . . . . . 10  |-  ( ph  ->  0  <  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) )
167 ltdivmul 8897 . . . . . . . . . 10  |-  ( ( ( ( Q  + 
1 )  +  1 )  e.  RR  /\  ( 1  /  ( ! `  Q )
)  e.  RR  /\  ( ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) )  e.  RR  /\  0  <  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  ->  ( (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) )  <  ( 1  / 
( ! `  Q
) )  <->  ( ( Q  +  1 )  +  1 )  < 
( ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) )  x.  (
1  /  ( ! `
 Q ) ) ) ) )
168101, 105, 165, 166, 167syl112anc 1253 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( Q  +  1 )  +  1 )  / 
( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) ) )  <  (
1  /  ( ! `
 Q ) )  <-> 
( ( Q  + 
1 )  +  1 )  <  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) ) )
169164, 168mpbird 167 . . . . . . . 8  |-  ( ph  ->  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) )  <  ( 1  /  ( ! `  Q ) ) )
17055, 104, 105, 128, 169lelttrd 8146 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  <  ( 1  / 
( ! `  Q
) ) )
17155, 132, 68ltmuldiv2d 9814 . . . . . . 7  |-  ( ph  ->  ( ( ( ! `
 Q )  x. 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  <  1  <->  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k )  < 
( 1  /  ( ! `  Q )
) ) )
172170, 171mpbird 167 . . . . . 6  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  <  1 )
173 0p1e1 9098 . . . . . 6  |-  ( 0  +  1 )  =  1
174172, 173breqtrrdi 4072 . . . . 5  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  <  ( 0  +  1 ) )
17543, 70, 98, 99, 174btwnapz 9450 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) ) #  ( ( ( ! `
 Q )  x.  ( P  /  Q
) )  -  (
( ! `  Q
)  x.  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) ) )
17667, 175eqbrtrrd 4054 . . 3  |-  ( ph  ->  ( ( ( ! `
 Q )  x.  _e )  -  (
( ! `  Q
)  x.  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) ) #  ( ( ( ! `
 Q )  x.  ( P  /  Q
) )  -  (
( ! `  Q
)  x.  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) ) )
17762, 65mulcld 8042 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  _e )  e.  CC )
17881zcnd 9443 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  ( P  /  Q ) )  e.  CC )
17962, 48mulcld 8042 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  e.  CC )
180 apsub1 8663 . . . 4  |-  ( ( ( ( ! `  Q )  x.  _e )  e.  CC  /\  (
( ! `  Q
)  x.  ( P  /  Q ) )  e.  CC  /\  (
( ! `  Q
)  x.  sum_ k  e.  ( 0 ... Q
) ( F `  k ) )  e.  CC )  ->  (
( ( ! `  Q )  x.  _e ) #  ( ( ! `  Q )  x.  ( P  /  Q ) )  <-> 
( ( ( ! `
 Q )  x.  _e )  -  (
( ! `  Q
)  x.  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) ) #  ( ( ( ! `
 Q )  x.  ( P  /  Q
) )  -  (
( ! `  Q
)  x.  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) ) ) )
181177, 178, 179, 180syl3anc 1249 . . 3  |-  ( ph  ->  ( ( ( ! `
 Q )  x.  _e ) #  ( ( ! `  Q )  x.  ( P  /  Q ) )  <->  ( (
( ! `  Q
)  x.  _e )  -  ( ( ! `
 Q )  x. 
sum_ k  e.  ( 0 ... Q ) ( F `  k
) ) ) #  ( ( ( ! `  Q )  x.  ( P  /  Q ) )  -  ( ( ! `
 Q )  x. 
sum_ k  e.  ( 0 ... Q ) ( F `  k
) ) ) ) )
182176, 181mpbird 167 . 2  |-  ( ph  ->  ( ( ! `  Q )  x.  _e ) #  ( ( ! `  Q )  x.  ( P  /  Q ) ) )
183 znq 9692 . . . . 5  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  ( P  /  Q
)  e.  QQ )
18471, 13, 183syl2anc 411 . . . 4  |-  ( ph  ->  ( P  /  Q
)  e.  QQ )
185 qcn 9702 . . . 4  |-  ( ( P  /  Q )  e.  QQ  ->  ( P  /  Q )  e.  CC )
186184, 185syl 14 . . 3  |-  ( ph  ->  ( P  /  Q
)  e.  CC )
187 apmul2 8810 . . 3  |-  ( ( _e  e.  CC  /\  ( P  /  Q
)  e.  CC  /\  ( ( ! `  Q )  e.  CC  /\  ( ! `  Q
) #  0 ) )  ->  ( _e #  ( P  /  Q )  <->  ( ( ! `  Q )  x.  _e ) #  ( ( ! `  Q )  x.  ( P  /  Q ) ) ) )
18865, 186, 62, 156, 187syl112anc 1253 . 2  |-  ( ph  ->  ( _e #  ( P  /  Q )  <->  ( ( ! `  Q )  x.  _e ) #  ( ( ! `  Q )  x.  ( P  /  Q ) ) ) )
189182, 188mpbird 167 1  |-  ( ph  ->  _e #  ( P  /  Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   class class class wbr 4030    |-> cmpt 4091   dom cdm 4660   ` cfv 5255  (class class class)co 5919   CCcc 7872   RRcr 7873   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879    < clt 8056    <_ cle 8057    - cmin 8192   # cap 8602    / cdiv 8693   NNcn 8984   2c2 9035   NN0cn0 9243   ZZcz 9320   ZZ>=cuz 9595   QQcq 9687   RR+crp 9722   ...cfz 10077    seqcseq 10521   ^cexp 10612   !cfa 10799   abscabs 11144    ~~> cli 11424   sum_csu 11499   _eceu 11789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-ico 9963  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-fac 10800  df-bc 10822  df-ihash 10850  df-shft 10962  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-ef 11794  df-e 11795
This theorem is referenced by:  eirrap  11924
  Copyright terms: Public domain W3C validator