ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eirraplem Unicode version

Theorem eirraplem 12288
Description: Lemma for eirrap 12289. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 5-Jan-2022.)
Hypotheses
Ref Expression
eirr.1  |-  F  =  ( n  e.  NN0  |->  ( 1  /  ( ! `  n )
) )
eirr.2  |-  ( ph  ->  P  e.  ZZ )
eirr.3  |-  ( ph  ->  Q  e.  NN )
Assertion
Ref Expression
eirraplem  |-  ( ph  ->  _e #  ( P  /  Q ) )
Distinct variable group:    Q, n
Allowed substitution hints:    ph( n)    P( n)    F( n)

Proof of Theorem eirraplem
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 esum 12173 . . . . . . . . . . 11  |-  _e  =  sum_ k  e.  NN0  (
1  /  ( ! `
 k ) )
2 faccl 10957 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
32nnrecred 9157 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( 1  /  ( ! `  k ) )  e.  RR )
4 fveq2 5627 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  ( ! `  n )  =  ( ! `  k ) )
54oveq2d 6017 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
1  /  ( ! `
 n ) )  =  ( 1  / 
( ! `  k
) ) )
6 eirr.1 . . . . . . . . . . . . . 14  |-  F  =  ( n  e.  NN0  |->  ( 1  /  ( ! `  n )
) )
75, 6fvmptg 5710 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  ( 1  /  ( ! `  k )
)  e.  RR )  ->  ( F `  k )  =  ( 1  /  ( ! `
 k ) ) )
83, 7mpdan 421 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( F `
 k )  =  ( 1  /  ( ! `  k )
) )
98sumeq2i 11875 . . . . . . . . . . 11  |-  sum_ k  e.  NN0  ( F `  k )  =  sum_ k  e.  NN0  ( 1  /  ( ! `  k ) )
101, 9eqtr4i 2253 . . . . . . . . . 10  |-  _e  =  sum_ k  e.  NN0  ( F `  k )
11 nn0uz 9757 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
12 eqid 2229 . . . . . . . . . . 11  |-  ( ZZ>= `  ( Q  +  1
) )  =  (
ZZ>= `  ( Q  + 
1 ) )
13 eirr.3 . . . . . . . . . . . . 13  |-  ( ph  ->  Q  e.  NN )
1413peano2nnd 9125 . . . . . . . . . . . 12  |-  ( ph  ->  ( Q  +  1 )  e.  NN )
1514nnnn0d 9422 . . . . . . . . . . 11  |-  ( ph  ->  ( Q  +  1 )  e.  NN0 )
16 eqidd 2230 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( F `  k ) )
17 ax-1cn 8092 . . . . . . . . . . . . . 14  |-  1  e.  CC
18 nn0z 9466 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN0  ->  n  e.  ZZ )
19 1exp 10790 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ZZ  ->  (
1 ^ n )  =  1 )
2018, 19syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN0  ->  ( 1 ^ n )  =  1 )
2120oveq1d 6016 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN0  ->  ( ( 1 ^ n )  /  ( ! `  n ) )  =  ( 1  /  ( ! `  n )
) )
2221mpteq2ia 4170 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN0  |->  ( ( 1 ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( 1  / 
( ! `  n
) ) )
236, 22eqtr4i 2253 . . . . . . . . . . . . . . 15  |-  F  =  ( n  e.  NN0  |->  ( ( 1 ^ n )  /  ( ! `  n )
) )
2423eftvalcn 12168 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  =  ( ( 1 ^ k )  /  ( ! `  k ) ) )
2517, 24mpan 424 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( F `
 k )  =  ( ( 1 ^ k )  /  ( ! `  k )
) )
2625adantl 277 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( ( 1 ^ k
)  /  ( ! `
 k ) ) )
2717a1i 9 . . . . . . . . . . . . 13  |-  ( ph  ->  1  e.  CC )
28 eftcl 12165 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  k  e.  NN0 )  -> 
( ( 1 ^ k )  /  ( ! `  k )
)  e.  CC )
2927, 28sylan 283 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
1 ^ k )  /  ( ! `  k ) )  e.  CC )
3026, 29eqeltrd 2306 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  CC )
3123efcllem 12170 . . . . . . . . . . . 12  |-  ( 1  e.  CC  ->  seq 0 (  +  ,  F )  e.  dom  ~~>  )
3227, 31syl 14 . . . . . . . . . . 11  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
dom 
~~>  )
3311, 12, 15, 16, 30, 32isumsplit 12002 . . . . . . . . . 10  |-  ( ph  -> 
sum_ k  e.  NN0  ( F `  k )  =  ( sum_ k  e.  ( 0 ... (
( Q  +  1 )  -  1 ) ) ( F `  k )  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) ) )
3410, 33eqtrid 2274 . . . . . . . . 9  |-  ( ph  ->  _e  =  ( sum_ k  e.  ( 0 ... ( ( Q  +  1 )  - 
1 ) ) ( F `  k )  +  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
3513nncnd 9124 . . . . . . . . . . . . 13  |-  ( ph  ->  Q  e.  CC )
36 pncan 8352 . . . . . . . . . . . . 13  |-  ( ( Q  e.  CC  /\  1  e.  CC )  ->  ( ( Q  + 
1 )  -  1 )  =  Q )
3735, 17, 36sylancl 413 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( Q  + 
1 )  -  1 )  =  Q )
3837oveq2d 6017 . . . . . . . . . . 11  |-  ( ph  ->  ( 0 ... (
( Q  +  1 )  -  1 ) )  =  ( 0 ... Q ) )
3938sumeq1d 11877 . . . . . . . . . 10  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( ( Q  +  1 )  -  1 ) ) ( F `  k
)  =  sum_ k  e.  ( 0 ... Q
) ( F `  k ) )
4039oveq1d 6016 . . . . . . . . 9  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( ( Q  +  1 )  -  1 ) ) ( F `  k
)  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )  =  (
sum_ k  e.  ( 0 ... Q ) ( F `  k
)  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) ) )
4134, 40eqtrd 2262 . . . . . . . 8  |-  ( ph  ->  _e  =  ( sum_ k  e.  ( 0 ... Q ) ( F `  k )  +  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
4241oveq1d 6016 . . . . . . 7  |-  ( ph  ->  ( _e  -  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  =  ( (
sum_ k  e.  ( 0 ... Q ) ( F `  k
)  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )  -  sum_ k  e.  ( 0 ... Q ) ( F `  k ) ) )
43 0zd 9458 . . . . . . . . . 10  |-  ( ph  ->  0  e.  ZZ )
4413nnzd 9568 . . . . . . . . . 10  |-  ( ph  ->  Q  e.  ZZ )
4543, 44fzfigd 10653 . . . . . . . . 9  |-  ( ph  ->  ( 0 ... Q
)  e.  Fin )
46 elfznn0 10310 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... Q )  ->  k  e.  NN0 )
4746, 30sylan2 286 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( F `  k )  e.  CC )
4845, 47fsumcl 11911 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( 0 ... Q ) ( F `  k
)  e.  CC )
498adantl 277 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( 1  /  ( ! `
 k ) ) )
502adantl 277 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  NN )
5150nnrpd 9890 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ! `  k )  e.  RR+ )
5251rpreccld 9903 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 1  /  ( ! `  k ) )  e.  RR+ )
5349, 52eqeltrd 2306 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  RR+ )
5411, 12, 15, 16, 53, 32isumrpcl 12005 . . . . . . . . . 10  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR+ )
5554rpred 9892 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR )
5655recnd 8175 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  CC )
5748, 56pncan2d 8459 . . . . . . 7  |-  ( ph  ->  ( ( sum_ k  e.  ( 0 ... Q
) ( F `  k )  +  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  -  sum_ k  e.  ( 0 ... Q ) ( F `  k
) )  =  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )
5842, 57eqtrd 2262 . . . . . 6  |-  ( ph  ->  ( _e  -  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  =  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )
5958oveq2d 6017 . . . . 5  |-  ( ph  ->  ( ( ! `  Q )  x.  (
_e  -  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) )  =  ( ( ! `
 Q )  x. 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
6013nnnn0d 9422 . . . . . . . 8  |-  ( ph  ->  Q  e.  NN0 )
6160faccld 10958 . . . . . . 7  |-  ( ph  ->  ( ! `  Q
)  e.  NN )
6261nncnd 9124 . . . . . 6  |-  ( ph  ->  ( ! `  Q
)  e.  CC )
63 ere 12181 . . . . . . . 8  |-  _e  e.  RR
6463recni 8158 . . . . . . 7  |-  _e  e.  CC
6564a1i 9 . . . . . 6  |-  ( ph  ->  _e  e.  CC )
6662, 65, 48subdid 8560 . . . . 5  |-  ( ph  ->  ( ( ! `  Q )  x.  (
_e  -  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) )  =  ( ( ( ! `  Q )  x.  _e )  -  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) ) ) )
6759, 66eqtr3d 2264 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  =  ( ( ( ! `  Q )  x.  _e )  -  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) ) ) )
6861nnrpd 9890 . . . . . . 7  |-  ( ph  ->  ( ! `  Q
)  e.  RR+ )
6968, 54rpmulcld 9909 . . . . . 6  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  e.  RR+ )
7069rpred 9892 . . . . 5  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  e.  RR )
71 eirr.2 . . . . . . . . 9  |-  ( ph  ->  P  e.  ZZ )
7271zcnd 9570 . . . . . . . 8  |-  ( ph  ->  P  e.  CC )
7313nnap0d 9156 . . . . . . . 8  |-  ( ph  ->  Q #  0 )
7462, 72, 35, 73div12apd 8974 . . . . . . 7  |-  ( ph  ->  ( ( ! `  Q )  x.  ( P  /  Q ) )  =  ( P  x.  ( ( ! `  Q )  /  Q
) ) )
7513nnred 9123 . . . . . . . . . . 11  |-  ( ph  ->  Q  e.  RR )
7675leidd 8661 . . . . . . . . . 10  |-  ( ph  ->  Q  <_  Q )
77 facdiv 10960 . . . . . . . . . 10  |-  ( ( Q  e.  NN0  /\  Q  e.  NN  /\  Q  <_  Q )  ->  (
( ! `  Q
)  /  Q )  e.  NN )
7860, 13, 76, 77syl3anc 1271 . . . . . . . . 9  |-  ( ph  ->  ( ( ! `  Q )  /  Q
)  e.  NN )
7978nnzd 9568 . . . . . . . 8  |-  ( ph  ->  ( ( ! `  Q )  /  Q
)  e.  ZZ )
8071, 79zmulcld 9575 . . . . . . 7  |-  ( ph  ->  ( P  x.  (
( ! `  Q
)  /  Q ) )  e.  ZZ )
8174, 80eqeltrd 2306 . . . . . 6  |-  ( ph  ->  ( ( ! `  Q )  x.  ( P  /  Q ) )  e.  ZZ )
8245, 62, 47fsummulc2 11959 . . . . . . 7  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  =  sum_ k  e.  ( 0 ... Q
) ( ( ! `
 Q )  x.  ( F `  k
) ) )
8346adantl 277 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  k  e.  NN0 )
8483, 8syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( F `  k )  =  ( 1  / 
( ! `  k
) ) )
8584oveq2d 6017 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  =  ( ( ! `
 Q )  x.  ( 1  /  ( ! `  k )
) ) )
8662adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  Q )  e.  CC )
8746, 50sylan2 286 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  k )  e.  NN )
8887nncnd 9124 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  k )  e.  CC )
8987nnap0d 9156 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  ( ! `  k ) #  0 )
9086, 88, 89divrecapd 8940 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  /  ( ! `
 k ) )  =  ( ( ! `
 Q )  x.  ( 1  /  ( ! `  k )
) ) )
9185, 90eqtr4d 2265 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  =  ( ( ! `
 Q )  / 
( ! `  k
) ) )
92 permnn 10993 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... Q )  ->  (
( ! `  Q
)  /  ( ! `
 k ) )  e.  NN )
9392adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  /  ( ! `
 k ) )  e.  NN )
9491, 93eqeltrd 2306 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  e.  NN )
9594nnzd 9568 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... Q
) )  ->  (
( ! `  Q
)  x.  ( F `
 k ) )  e.  ZZ )
9645, 95fsumzcl 11913 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( 0 ... Q ) ( ( ! `  Q )  x.  ( F `  k )
)  e.  ZZ )
9782, 96eqeltrd 2306 . . . . . 6  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  e.  ZZ )
9881, 97zsubcld 9574 . . . . 5  |-  ( ph  ->  ( ( ( ! `
 Q )  x.  ( P  /  Q
) )  -  (
( ! `  Q
)  x.  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) )  e.  ZZ )
9969rpgt0d 9895 . . . . 5  |-  ( ph  ->  0  <  ( ( ! `  Q )  x.  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
10014peano2nnd 9125 . . . . . . . . . 10  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  e.  NN )
101100nnred 9123 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  e.  RR )
10215faccld 10958 . . . . . . . . . 10  |-  ( ph  ->  ( ! `  ( Q  +  1 ) )  e.  NN )
103102, 14nnmulcld 9159 . . . . . . . . 9  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) )  e.  NN )
104101, 103nndivred 9160 . . . . . . . 8  |-  ( ph  ->  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) )  e.  RR )
10561nnrecred 9157 . . . . . . . 8  |-  ( ph  ->  ( 1  /  ( ! `  Q )
)  e.  RR )
106 abs1 11583 . . . . . . . . . . . . . 14  |-  ( abs `  1 )  =  1
107106oveq1i 6011 . . . . . . . . . . . . 13  |-  ( ( abs `  1 ) ^ n )  =  ( 1 ^ n
)
108107oveq1i 6011 . . . . . . . . . . . 12  |-  ( ( ( abs `  1
) ^ n )  /  ( ! `  n ) )  =  ( ( 1 ^ n )  /  ( ! `  n )
)
109108mpteq2i 4171 . . . . . . . . . . 11  |-  ( n  e.  NN0  |->  ( ( ( abs `  1
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( 1 ^ n )  / 
( ! `  n
) ) )
11023, 109eqtr4i 2253 . . . . . . . . . 10  |-  F  =  ( n  e.  NN0  |->  ( ( ( abs `  1 ) ^
n )  /  ( ! `  n )
) )
111 eqid 2229 . . . . . . . . . 10  |-  ( n  e.  NN0  |->  ( ( ( ( abs `  1
) ^ ( Q  +  1 ) )  /  ( ! `  ( Q  +  1
) ) )  x.  ( ( 1  / 
( ( Q  + 
1 )  +  1 ) ) ^ n
) ) )  =  ( n  e.  NN0  |->  ( ( ( ( abs `  1 ) ^ ( Q  + 
1 ) )  / 
( ! `  ( Q  +  1 ) ) )  x.  (
( 1  /  (
( Q  +  1 )  +  1 ) ) ^ n ) ) )
112 1le1 8719 . . . . . . . . . . . 12  |-  1  <_  1
113106, 112eqbrtri 4104 . . . . . . . . . . 11  |-  ( abs `  1 )  <_ 
1
114113a1i 9 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  1
)  <_  1 )
11523, 110, 111, 14, 27, 114eftlub 12201 . . . . . . . . 9  |-  ( ph  ->  ( abs `  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  <_  ( ( ( abs `  1 ) ^ ( Q  + 
1 ) )  x.  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) ) ) )
11654rprege0d 9900 . . . . . . . . . 10  |-  ( ph  ->  ( sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR  /\  0  <_ 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) ) )
117 absid 11582 . . . . . . . . . 10  |-  ( (
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  e.  RR  /\  0  <_ 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  ->  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  =  sum_ k  e.  ( ZZ>= `  ( Q  +  1 ) ) ( F `  k
) )
118116, 117syl 14 . . . . . . . . 9  |-  ( ph  ->  ( abs `  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  =  sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )
119106oveq1i 6011 . . . . . . . . . . . 12  |-  ( ( abs `  1 ) ^ ( Q  + 
1 ) )  =  ( 1 ^ ( Q  +  1 ) )
12014nnzd 9568 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Q  +  1 )  e.  ZZ )
121 1exp 10790 . . . . . . . . . . . . 13  |-  ( ( Q  +  1 )  e.  ZZ  ->  (
1 ^ ( Q  +  1 ) )  =  1 )
122120, 121syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1 ^ ( Q  +  1 ) )  =  1 )
123119, 122eqtrid 2274 . . . . . . . . . . 11  |-  ( ph  ->  ( ( abs `  1
) ^ ( Q  +  1 ) )  =  1 )
124123oveq1d 6016 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( abs `  1 ) ^
( Q  +  1 ) )  x.  (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  =  ( 1  x.  ( ( ( Q  +  1 )  +  1 )  / 
( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) ) ) ) )
125104recnd 8175 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) )  e.  CC )
126125mulid2d 8165 . . . . . . . . . 10  |-  ( ph  ->  ( 1  x.  (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  =  ( ( ( Q  +  1 )  +  1 )  /  ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) ) ) )
127124, 126eqtrd 2262 . . . . . . . . 9  |-  ( ph  ->  ( ( ( abs `  1 ) ^
( Q  +  1 ) )  x.  (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  =  ( ( ( Q  +  1 )  +  1 )  /  ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) ) ) )
128115, 118, 1273brtr3d 4114 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  <_  ( ( ( Q  +  1 )  +  1 )  / 
( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) ) ) )
12914nnred 9123 . . . . . . . . . . . 12  |-  ( ph  ->  ( Q  +  1 )  e.  RR )
130129, 129readdcld 8176 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  + 
1 )  +  ( Q  +  1 ) )  e.  RR )
131129, 129remulcld 8177 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  + 
1 )  x.  ( Q  +  1 ) )  e.  RR )
132 1red 8161 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  RR )
13313nnge1d 9153 . . . . . . . . . . . . 13  |-  ( ph  ->  1  <_  Q )
134 1nn 9121 . . . . . . . . . . . . . 14  |-  1  e.  NN
135 nnleltp1 9506 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  NN  /\  Q  e.  NN )  ->  ( 1  <_  Q  <->  1  <  ( Q  + 
1 ) ) )
136134, 13, 135sylancr 414 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1  <_  Q  <->  1  <  ( Q  + 
1 ) ) )
137133, 136mpbid 147 . . . . . . . . . . . 12  |-  ( ph  ->  1  <  ( Q  +  1 ) )
138132, 129, 129, 137ltadd2dd 8569 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  <  ( ( Q  +  1 )  +  ( Q  + 
1 ) ) )
13914nncnd 9124 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Q  +  1 )  e.  CC )
1401392timesd 9354 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  x.  ( Q  +  1 ) )  =  ( ( Q  +  1 )  +  ( Q  + 
1 ) ) )
141 df-2 9169 . . . . . . . . . . . . . 14  |-  2  =  ( 1  +  1 )
142132, 75, 132, 133leadd1dd 8706 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1  +  1 )  <_  ( Q  +  1 ) )
143141, 142eqbrtrid 4118 . . . . . . . . . . . . 13  |-  ( ph  ->  2  <_  ( Q  +  1 ) )
144 2re 9180 . . . . . . . . . . . . . . 15  |-  2  e.  RR
145144a1i 9 . . . . . . . . . . . . . 14  |-  ( ph  ->  2  e.  RR )
14614nngt0d 9154 . . . . . . . . . . . . . 14  |-  ( ph  ->  0  <  ( Q  +  1 ) )
147 lemul1 8740 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  RR  /\  ( Q  +  1
)  e.  RR  /\  ( ( Q  + 
1 )  e.  RR  /\  0  <  ( Q  +  1 ) ) )  ->  ( 2  <_  ( Q  + 
1 )  <->  ( 2  x.  ( Q  + 
1 ) )  <_ 
( ( Q  + 
1 )  x.  ( Q  +  1 ) ) ) )
148145, 129, 129, 146, 147syl112anc 1275 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2  <_  ( Q  +  1 )  <-> 
( 2  x.  ( Q  +  1 ) )  <_  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) ) )
149143, 148mpbid 147 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  x.  ( Q  +  1 ) )  <_  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) )
150140, 149eqbrtrrd 4107 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  + 
1 )  +  ( Q  +  1 ) )  <_  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) )
151101, 130, 131, 138, 150ltletrd 8570 . . . . . . . . . 10  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  <  ( ( Q  +  1 )  x.  ( Q  + 
1 ) ) )
152 facp1 10952 . . . . . . . . . . . . . . 15  |-  ( Q  e.  NN0  ->  ( ! `
 ( Q  + 
1 ) )  =  ( ( ! `  Q )  x.  ( Q  +  1 ) ) )
15360, 152syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ! `  ( Q  +  1 ) )  =  ( ( ! `  Q )  x.  ( Q  + 
1 ) ) )
154153oveq1d 6016 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  /  ( ! `  Q )
)  =  ( ( ( ! `  Q
)  x.  ( Q  +  1 ) )  /  ( ! `  Q ) ) )
155102nncnd 9124 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ! `  ( Q  +  1 ) )  e.  CC )
15661nnap0d 9156 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ! `  Q
) #  0 )
157155, 62, 156divrecapd 8940 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  /  ( ! `  Q )
)  =  ( ( ! `  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
158139, 62, 156divcanap3d 8942 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ! `
 Q )  x.  ( Q  +  1 ) )  /  ( ! `  Q )
)  =  ( Q  +  1 ) )
159154, 157, 1583eqtr3rd 2271 . . . . . . . . . . . 12  |-  ( ph  ->  ( Q  +  1 )  =  ( ( ! `  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
160159oveq1d 6016 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Q  + 
1 )  x.  ( Q  +  1 ) )  =  ( ( ( ! `  ( Q  +  1 ) )  x.  ( 1  /  ( ! `  Q ) ) )  x.  ( Q  + 
1 ) ) )
161105recnd 8175 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1  /  ( ! `  Q )
)  e.  CC )
162155, 161, 139mul32d 8299 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ! `
 ( Q  + 
1 ) )  x.  ( 1  /  ( ! `  Q )
) )  x.  ( Q  +  1 ) )  =  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
163160, 162eqtrd 2262 . . . . . . . . . 10  |-  ( ph  ->  ( ( Q  + 
1 )  x.  ( Q  +  1 ) )  =  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
164151, 163breqtrd 4109 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  <  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) )
165103nnred 9123 . . . . . . . . . 10  |-  ( ph  ->  ( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) )  e.  RR )
166103nngt0d 9154 . . . . . . . . . 10  |-  ( ph  ->  0  <  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) )
167 ltdivmul 9023 . . . . . . . . . 10  |-  ( ( ( ( Q  + 
1 )  +  1 )  e.  RR  /\  ( 1  /  ( ! `  Q )
)  e.  RR  /\  ( ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) )  e.  RR  /\  0  <  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) ) )  ->  ( (
( ( Q  + 
1 )  +  1 )  /  ( ( ! `  ( Q  +  1 ) )  x.  ( Q  + 
1 ) ) )  <  ( 1  / 
( ! `  Q
) )  <->  ( ( Q  +  1 )  +  1 )  < 
( ( ( ! `
 ( Q  + 
1 ) )  x.  ( Q  +  1 ) )  x.  (
1  /  ( ! `
 Q ) ) ) ) )
168101, 105, 165, 166, 167syl112anc 1275 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( Q  +  1 )  +  1 )  / 
( ( ! `  ( Q  +  1
) )  x.  ( Q  +  1 ) ) )  <  (
1  /  ( ! `
 Q ) )  <-> 
( ( Q  + 
1 )  +  1 )  <  ( ( ( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) )  x.  ( 1  / 
( ! `  Q
) ) ) ) )
169164, 168mpbird 167 . . . . . . . 8  |-  ( ph  ->  ( ( ( Q  +  1 )  +  1 )  /  (
( ! `  ( Q  +  1 ) )  x.  ( Q  +  1 ) ) )  <  ( 1  /  ( ! `  Q ) ) )
17055, 104, 105, 128, 169lelttrd 8271 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k )  <  ( 1  / 
( ! `  Q
) ) )
17155, 132, 68ltmuldiv2d 9941 . . . . . . 7  |-  ( ph  ->  ( ( ( ! `
 Q )  x. 
sum_ k  e.  (
ZZ>= `  ( Q  + 
1 ) ) ( F `  k ) )  <  1  <->  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k )  < 
( 1  /  ( ! `  Q )
) ) )
172170, 171mpbird 167 . . . . . 6  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  <  1 )
173 0p1e1 9224 . . . . . 6  |-  ( 0  +  1 )  =  1
174172, 173breqtrrdi 4125 . . . . 5  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) )  <  ( 0  +  1 ) )
17543, 70, 98, 99, 174btwnapz 9577 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( ZZ>= `  ( Q  +  1
) ) ( F `
 k ) ) #  ( ( ( ! `
 Q )  x.  ( P  /  Q
) )  -  (
( ! `  Q
)  x.  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) ) )
17667, 175eqbrtrrd 4107 . . 3  |-  ( ph  ->  ( ( ( ! `
 Q )  x.  _e )  -  (
( ! `  Q
)  x.  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) ) #  ( ( ( ! `
 Q )  x.  ( P  /  Q
) )  -  (
( ! `  Q
)  x.  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) ) )
17762, 65mulcld 8167 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  _e )  e.  CC )
17881zcnd 9570 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  ( P  /  Q ) )  e.  CC )
17962, 48mulcld 8167 . . . 4  |-  ( ph  ->  ( ( ! `  Q )  x.  sum_ k  e.  ( 0 ... Q ) ( F `  k ) )  e.  CC )
180 apsub1 8789 . . . 4  |-  ( ( ( ( ! `  Q )  x.  _e )  e.  CC  /\  (
( ! `  Q
)  x.  ( P  /  Q ) )  e.  CC  /\  (
( ! `  Q
)  x.  sum_ k  e.  ( 0 ... Q
) ( F `  k ) )  e.  CC )  ->  (
( ( ! `  Q )  x.  _e ) #  ( ( ! `  Q )  x.  ( P  /  Q ) )  <-> 
( ( ( ! `
 Q )  x.  _e )  -  (
( ! `  Q
)  x.  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) ) #  ( ( ( ! `
 Q )  x.  ( P  /  Q
) )  -  (
( ! `  Q
)  x.  sum_ k  e.  ( 0 ... Q
) ( F `  k ) ) ) ) )
181177, 178, 179, 180syl3anc 1271 . . 3  |-  ( ph  ->  ( ( ( ! `
 Q )  x.  _e ) #  ( ( ! `  Q )  x.  ( P  /  Q ) )  <->  ( (
( ! `  Q
)  x.  _e )  -  ( ( ! `
 Q )  x. 
sum_ k  e.  ( 0 ... Q ) ( F `  k
) ) ) #  ( ( ( ! `  Q )  x.  ( P  /  Q ) )  -  ( ( ! `
 Q )  x. 
sum_ k  e.  ( 0 ... Q ) ( F `  k
) ) ) ) )
182176, 181mpbird 167 . 2  |-  ( ph  ->  ( ( ! `  Q )  x.  _e ) #  ( ( ! `  Q )  x.  ( P  /  Q ) ) )
183 znq 9819 . . . . 5  |-  ( ( P  e.  ZZ  /\  Q  e.  NN )  ->  ( P  /  Q
)  e.  QQ )
18471, 13, 183syl2anc 411 . . . 4  |-  ( ph  ->  ( P  /  Q
)  e.  QQ )
185 qcn 9829 . . . 4  |-  ( ( P  /  Q )  e.  QQ  ->  ( P  /  Q )  e.  CC )
186184, 185syl 14 . . 3  |-  ( ph  ->  ( P  /  Q
)  e.  CC )
187 apmul2 8936 . . 3  |-  ( ( _e  e.  CC  /\  ( P  /  Q
)  e.  CC  /\  ( ( ! `  Q )  e.  CC  /\  ( ! `  Q
) #  0 ) )  ->  ( _e #  ( P  /  Q )  <->  ( ( ! `  Q )  x.  _e ) #  ( ( ! `  Q )  x.  ( P  /  Q ) ) ) )
18865, 186, 62, 156, 187syl112anc 1275 . 2  |-  ( ph  ->  ( _e #  ( P  /  Q )  <->  ( ( ! `  Q )  x.  _e ) #  ( ( ! `  Q )  x.  ( P  /  Q ) ) ) )
189182, 188mpbird 167 1  |-  ( ph  ->  _e #  ( P  /  Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4083    |-> cmpt 4145   dom cdm 4719   ` cfv 5318  (class class class)co 6001   CCcc 7997   RRcr 7998   0cc0 7999   1c1 8000    + caddc 8002    x. cmul 8004    < clt 8181    <_ cle 8182    - cmin 8317   # cap 8728    / cdiv 8819   NNcn 9110   2c2 9161   NN0cn0 9369   ZZcz 9446   ZZ>=cuz 9722   QQcq 9814   RR+crp 9849   ...cfz 10204    seqcseq 10669   ^cexp 10760   !cfa 10947   abscabs 11508    ~~> cli 11789   sum_csu 11864   _eceu 12154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-ico 10090  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-fac 10948  df-bc 10970  df-ihash 10998  df-shft 11326  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865  df-ef 12159  df-e 12160
This theorem is referenced by:  eirrap  12289
  Copyright terms: Public domain W3C validator