ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmpt Unicode version

Theorem dmmpt 5126
Description: The domain of the mapping operation in general. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 22-Mar-2015.)
Hypothesis
Ref Expression
dmmpo.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
dmmpt  |-  dom  F  =  { x  e.  A  |  B  e.  _V }

Proof of Theorem dmmpt
StepHypRef Expression
1 dfdm4 4821 . 2  |-  dom  F  =  ran  `' F
2 dfrn4 5091 . 2  |-  ran  `' F  =  ( `' F " _V )
3 dmmpo.1 . . 3  |-  F  =  ( x  e.  A  |->  B )
43mptpreima 5124 . 2  |-  ( `' F " _V )  =  { x  e.  A  |  B  e.  _V }
51, 2, 43eqtri 2202 1  |-  dom  F  =  { x  e.  A  |  B  e.  _V }
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148   {crab 2459   _Vcvv 2739    |-> cmpt 4066   `'ccnv 4627   dom cdm 4628   ran crn 4629   "cima 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-mpt 4068  df-xp 4634  df-rel 4635  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641
This theorem is referenced by:  dmmptss  5127  dmmptg  5128  dmmptd  5348  fvmptssdm  5602  isnumi  7183  dvrecap  14262
  Copyright terms: Public domain W3C validator