Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mptiniseg | GIF version |
Description: Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
dmmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
mptiniseg | ⊢ (𝐶 ∈ 𝑉 → (◡𝐹 “ {𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | mptpreima 5078 | . 2 ⊢ (◡𝐹 “ {𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {𝐶}} |
3 | elsn2g 3593 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (𝐵 ∈ {𝐶} ↔ 𝐵 = 𝐶)) | |
4 | 3 | rabbidv 2701 | . 2 ⊢ (𝐶 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {𝐶}} = {𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶}) |
5 | 2, 4 | syl5eq 2202 | 1 ⊢ (𝐶 ∈ 𝑉 → (◡𝐹 “ {𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ∈ wcel 2128 {crab 2439 {csn 3560 ↦ cmpt 4025 ◡ccnv 4584 “ cima 4588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-mpt 4027 df-xp 4591 df-rel 4592 df-cnv 4593 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |