ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptiniseg GIF version

Theorem mptiniseg 5105
Description: Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypothesis
Ref Expression
dmmpo.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
mptiniseg (𝐶𝑉 → (𝐹 “ {𝐶}) = {𝑥𝐴𝐵 = 𝐶})
Distinct variable groups:   𝑥,𝐶   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem mptiniseg
StepHypRef Expression
1 dmmpo.1 . . 3 𝐹 = (𝑥𝐴𝐵)
21mptpreima 5104 . 2 (𝐹 “ {𝐶}) = {𝑥𝐴𝐵 ∈ {𝐶}}
3 elsn2g 3616 . . 3 (𝐶𝑉 → (𝐵 ∈ {𝐶} ↔ 𝐵 = 𝐶))
43rabbidv 2719 . 2 (𝐶𝑉 → {𝑥𝐴𝐵 ∈ {𝐶}} = {𝑥𝐴𝐵 = 𝐶})
52, 4eqtrid 2215 1 (𝐶𝑉 → (𝐹 “ {𝐶}) = {𝑥𝐴𝐵 = 𝐶})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  {crab 2452  {csn 3583  cmpt 4050  ccnv 4610  cima 4614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-mpt 4052  df-xp 4617  df-rel 4618  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator