ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptiniseg GIF version

Theorem mptiniseg 5079
Description: Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypothesis
Ref Expression
dmmpo.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
mptiniseg (𝐶𝑉 → (𝐹 “ {𝐶}) = {𝑥𝐴𝐵 = 𝐶})
Distinct variable groups:   𝑥,𝐶   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem mptiniseg
StepHypRef Expression
1 dmmpo.1 . . 3 𝐹 = (𝑥𝐴𝐵)
21mptpreima 5078 . 2 (𝐹 “ {𝐶}) = {𝑥𝐴𝐵 ∈ {𝐶}}
3 elsn2g 3593 . . 3 (𝐶𝑉 → (𝐵 ∈ {𝐶} ↔ 𝐵 = 𝐶))
43rabbidv 2701 . 2 (𝐶𝑉 → {𝑥𝐴𝐵 ∈ {𝐶}} = {𝑥𝐴𝐵 = 𝐶})
52, 4syl5eq 2202 1 (𝐶𝑉 → (𝐹 “ {𝐶}) = {𝑥𝐴𝐵 = 𝐶})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1335  wcel 2128  {crab 2439  {csn 3560  cmpt 4025  ccnv 4584  cima 4588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-mpt 4027  df-xp 4591  df-rel 4592  df-cnv 4593  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator