ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptiniseg GIF version

Theorem mptiniseg 5186
Description: Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypothesis
Ref Expression
dmmpo.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
mptiniseg (𝐶𝑉 → (𝐹 “ {𝐶}) = {𝑥𝐴𝐵 = 𝐶})
Distinct variable groups:   𝑥,𝐶   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem mptiniseg
StepHypRef Expression
1 dmmpo.1 . . 3 𝐹 = (𝑥𝐴𝐵)
21mptpreima 5185 . 2 (𝐹 “ {𝐶}) = {𝑥𝐴𝐵 ∈ {𝐶}}
3 elsn2g 3671 . . 3 (𝐶𝑉 → (𝐵 ∈ {𝐶} ↔ 𝐵 = 𝐶))
43rabbidv 2762 . 2 (𝐶𝑉 → {𝑥𝐴𝐵 ∈ {𝐶}} = {𝑥𝐴𝐵 = 𝐶})
52, 4eqtrid 2251 1 (𝐶𝑉 → (𝐹 “ {𝐶}) = {𝑥𝐴𝐵 = 𝐶})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  {crab 2489  {csn 3638  cmpt 4113  ccnv 4682  cima 4686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-mpt 4115  df-xp 4689  df-rel 4690  df-cnv 4691  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator