ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptrel GIF version

Theorem mptrel 4827
Description: The maps-to notation always describes a relationship. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
mptrel Rel (𝑥𝐴𝐵)

Proof of Theorem mptrel
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 4126 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
21relopabi 4824 1 Rel (𝑥𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1375  wcel 2180  cmpt 4124  Rel wrel 4701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-opab 4125  df-mpt 4126  df-xp 4702  df-rel 4703
This theorem is referenced by:  swrd0g  11158  rrgmex  14190  lssmex  14284  2idlmex  14430  cnprcl2k  14845  psmetrel  14961  metrel  14981  xmetrel  14982  xmetf  14989  mopnrel  15080
  Copyright terms: Public domain W3C validator