| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptrel | GIF version | ||
| Description: The maps-to notation always describes a relationship. (Contributed by Scott Fenton, 16-Apr-2012.) |
| Ref | Expression |
|---|---|
| mptrel | ⊢ Rel (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt 4147 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 2 | 1 | relopabi 4847 | 1 ⊢ Rel (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 ↦ cmpt 4145 Rel wrel 4724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4146 df-mpt 4147 df-xp 4725 df-rel 4726 |
| This theorem is referenced by: swrd0g 11200 rrgmex 14233 lssmex 14327 2idlmex 14473 cnprcl2k 14888 psmetrel 15004 metrel 15024 xmetrel 15025 xmetf 15032 mopnrel 15123 |
| Copyright terms: Public domain | W3C validator |