ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muladdd Unicode version

Theorem muladdd 8190
Description: Product of two sums. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
mulm1d.1  |-  ( ph  ->  A  e.  CC )
mulnegd.2  |-  ( ph  ->  B  e.  CC )
subdid.3  |-  ( ph  ->  C  e.  CC )
muladdd.4  |-  ( ph  ->  D  e.  CC )
Assertion
Ref Expression
muladdd  |-  ( ph  ->  ( ( A  +  B )  x.  ( C  +  D )
)  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  +  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )

Proof of Theorem muladdd
StepHypRef Expression
1 mulm1d.1 . 2  |-  ( ph  ->  A  e.  CC )
2 mulnegd.2 . 2  |-  ( ph  ->  B  e.  CC )
3 subdid.3 . 2  |-  ( ph  ->  C  e.  CC )
4 muladdd.4 . 2  |-  ( ph  ->  D  e.  CC )
5 muladd 8158 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  x.  ( C  +  D )
)  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  +  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )
61, 2, 3, 4, 5syl22anc 1217 1  |-  ( ph  ->  ( ( A  +  B )  x.  ( C  +  D )
)  =  ( ( ( A  x.  C
)  +  ( D  x.  B ) )  +  ( ( A  x.  D )  +  ( C  x.  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331    e. wcel 1480  (class class class)co 5774   CCcc 7630    + caddc 7635    x. cmul 7637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-addcl 7728  ax-mulcl 7730  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-distr 7736
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-iota 5088  df-fv 5131  df-ov 5777
This theorem is referenced by:  mulreim  8378  sinadd  11454  cosadd  11455
  Copyright terms: Public domain W3C validator