ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muladdd GIF version

Theorem muladdd 8459
Description: Product of two sums. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
mulm1d.1 (𝜑𝐴 ∈ ℂ)
mulnegd.2 (𝜑𝐵 ∈ ℂ)
subdid.3 (𝜑𝐶 ∈ ℂ)
muladdd.4 (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
muladdd (𝜑 → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))))

Proof of Theorem muladdd
StepHypRef Expression
1 mulm1d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 mulnegd.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subdid.3 . 2 (𝜑𝐶 ∈ ℂ)
4 muladdd.4 . 2 (𝜑𝐷 ∈ ℂ)
5 muladd 8427 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
61, 2, 3, 4, 5syl22anc 1250 1 (𝜑 → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  (class class class)co 5925  cc 7894   + caddc 7899   · cmul 7901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-addcl 7992  ax-mulcl 7994  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-distr 8000
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928
This theorem is referenced by:  mulreim  8648  sinadd  11918  cosadd  11919  lgsquad2lem1  15406
  Copyright terms: Public domain W3C validator