| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cosadd | Unicode version | ||
| Description: Addition formula for cosine. Equation 15 of [Gleason] p. 310. (Contributed by NM, 15-Jan-2006.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| Ref | Expression |
|---|---|
| cosadd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcl 8080 |
. . 3
| |
| 2 | cosval 12099 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | coscl 12103 |
. . . . . . . 8
| |
| 5 | 4 | adantr 276 |
. . . . . . 7
|
| 6 | coscl 12103 |
. . . . . . . 8
| |
| 7 | 6 | adantl 277 |
. . . . . . 7
|
| 8 | 5, 7 | mulcld 8123 |
. . . . . 6
|
| 9 | ax-icn 8050 |
. . . . . . . 8
| |
| 10 | sincl 12102 |
. . . . . . . . 9
| |
| 11 | 10 | adantl 277 |
. . . . . . . 8
|
| 12 | mulcl 8082 |
. . . . . . . 8
| |
| 13 | 9, 11, 12 | sylancr 414 |
. . . . . . 7
|
| 14 | sincl 12102 |
. . . . . . . . 9
| |
| 15 | 14 | adantr 276 |
. . . . . . . 8
|
| 16 | mulcl 8082 |
. . . . . . . 8
| |
| 17 | 9, 15, 16 | sylancr 414 |
. . . . . . 7
|
| 18 | 13, 17 | mulcld 8123 |
. . . . . 6
|
| 19 | 8, 18 | addcld 8122 |
. . . . 5
|
| 20 | 5, 13 | mulcld 8123 |
. . . . . 6
|
| 21 | 7, 17 | mulcld 8123 |
. . . . . 6
|
| 22 | 20, 21 | addcld 8122 |
. . . . 5
|
| 23 | 19, 22, 19 | ppncand 8453 |
. . . 4
|
| 24 | adddi 8087 |
. . . . . . . 8
| |
| 25 | 9, 24 | mp3an1 1337 |
. . . . . . 7
|
| 26 | 25 | fveq2d 5598 |
. . . . . 6
|
| 27 | simpl 109 |
. . . . . . . 8
| |
| 28 | mulcl 8082 |
. . . . . . . 8
| |
| 29 | 9, 27, 28 | sylancr 414 |
. . . . . . 7
|
| 30 | simpr 110 |
. . . . . . . 8
| |
| 31 | mulcl 8082 |
. . . . . . . 8
| |
| 32 | 9, 30, 31 | sylancr 414 |
. . . . . . 7
|
| 33 | efadd 12071 |
. . . . . . 7
| |
| 34 | 29, 32, 33 | syl2anc 411 |
. . . . . 6
|
| 35 | efival 12128 |
. . . . . . . 8
| |
| 36 | efival 12128 |
. . . . . . . 8
| |
| 37 | 35, 36 | oveqan12d 5981 |
. . . . . . 7
|
| 38 | 5, 17, 7, 13 | muladdd 8518 |
. . . . . . 7
|
| 39 | 37, 38 | eqtrd 2239 |
. . . . . 6
|
| 40 | 26, 34, 39 | 3eqtrd 2243 |
. . . . 5
|
| 41 | negicn 8303 |
. . . . . . . 8
| |
| 42 | adddi 8087 |
. . . . . . . 8
| |
| 43 | 41, 42 | mp3an1 1337 |
. . . . . . 7
|
| 44 | 43 | fveq2d 5598 |
. . . . . 6
|
| 45 | mulcl 8082 |
. . . . . . . 8
| |
| 46 | 41, 27, 45 | sylancr 414 |
. . . . . . 7
|
| 47 | mulcl 8082 |
. . . . . . . 8
| |
| 48 | 41, 30, 47 | sylancr 414 |
. . . . . . 7
|
| 49 | efadd 12071 |
. . . . . . 7
| |
| 50 | 46, 48, 49 | syl2anc 411 |
. . . . . 6
|
| 51 | efmival 12129 |
. . . . . . . 8
| |
| 52 | efmival 12129 |
. . . . . . . 8
| |
| 53 | 51, 52 | oveqan12d 5981 |
. . . . . . 7
|
| 54 | 5, 17, 7, 13 | mulsubd 8519 |
. . . . . . 7
|
| 55 | 53, 54 | eqtrd 2239 |
. . . . . 6
|
| 56 | 44, 50, 55 | 3eqtrd 2243 |
. . . . 5
|
| 57 | 40, 56 | oveq12d 5980 |
. . . 4
|
| 58 | 19 | 2timesd 9310 |
. . . 4
|
| 59 | 23, 57, 58 | 3eqtr4d 2249 |
. . 3
|
| 60 | 59 | oveq1d 5977 |
. 2
|
| 61 | 2cn 9137 |
. . . . 5
| |
| 62 | 2ap0 9159 |
. . . . 5
| |
| 63 | divcanap3 8801 |
. . . . 5
| |
| 64 | 61, 62, 63 | mp3an23 1342 |
. . . 4
|
| 65 | 19, 64 | syl 14 |
. . 3
|
| 66 | 9 | a1i 9 |
. . . . . 6
|
| 67 | 66, 11, 66, 15 | mul4d 8257 |
. . . . 5
|
| 68 | ixi 8686 |
. . . . . . 7
| |
| 69 | 68 | oveq1i 5972 |
. . . . . 6
|
| 70 | 11, 15 | mulcomd 8124 |
. . . . . . 7
|
| 71 | 70 | oveq2d 5978 |
. . . . . 6
|
| 72 | 69, 71 | eqtrid 2251 |
. . . . 5
|
| 73 | 15, 11 | mulcld 8123 |
. . . . . 6
|
| 74 | 73 | mulm1d 8512 |
. . . . 5
|
| 75 | 67, 72, 74 | 3eqtrd 2243 |
. . . 4
|
| 76 | 75 | oveq2d 5978 |
. . 3
|
| 77 | 8, 73 | negsubd 8419 |
. . 3
|
| 78 | 65, 76, 77 | 3eqtrd 2243 |
. 2
|
| 79 | 3, 60, 78 | 3eqtrd 2243 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 ax-arch 8074 ax-caucvg 8075 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-disj 4031 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-isom 5294 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-irdg 6474 df-frec 6495 df-1o 6520 df-oadd 6524 df-er 6638 df-en 6846 df-dom 6847 df-fin 6848 df-sup 7107 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-n0 9326 df-z 9403 df-uz 9679 df-q 9771 df-rp 9806 df-ico 10046 df-fz 10161 df-fzo 10295 df-seqfrec 10625 df-exp 10716 df-fac 10903 df-bc 10925 df-ihash 10953 df-cj 11238 df-re 11239 df-im 11240 df-rsqrt 11394 df-abs 11395 df-clim 11675 df-sumdc 11750 df-ef 12044 df-sin 12046 df-cos 12047 |
| This theorem is referenced by: tanaddaplem 12134 tanaddap 12135 cossub 12137 sinmul 12140 cosmul 12141 addcos 12142 subcos 12143 sincossq 12144 cos2t 12146 cos12dec 12164 demoivreALT 12170 cosppi 15375 coshalfpip 15379 |
| Copyright terms: Public domain | W3C validator |