| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cosadd | Unicode version | ||
| Description: Addition formula for cosine. Equation 15 of [Gleason] p. 310. (Contributed by NM, 15-Jan-2006.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| Ref | Expression |
|---|---|
| cosadd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcl 8023 |
. . 3
| |
| 2 | cosval 11887 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | coscl 11891 |
. . . . . . . 8
| |
| 5 | 4 | adantr 276 |
. . . . . . 7
|
| 6 | coscl 11891 |
. . . . . . . 8
| |
| 7 | 6 | adantl 277 |
. . . . . . 7
|
| 8 | 5, 7 | mulcld 8066 |
. . . . . 6
|
| 9 | ax-icn 7993 |
. . . . . . . 8
| |
| 10 | sincl 11890 |
. . . . . . . . 9
| |
| 11 | 10 | adantl 277 |
. . . . . . . 8
|
| 12 | mulcl 8025 |
. . . . . . . 8
| |
| 13 | 9, 11, 12 | sylancr 414 |
. . . . . . 7
|
| 14 | sincl 11890 |
. . . . . . . . 9
| |
| 15 | 14 | adantr 276 |
. . . . . . . 8
|
| 16 | mulcl 8025 |
. . . . . . . 8
| |
| 17 | 9, 15, 16 | sylancr 414 |
. . . . . . 7
|
| 18 | 13, 17 | mulcld 8066 |
. . . . . 6
|
| 19 | 8, 18 | addcld 8065 |
. . . . 5
|
| 20 | 5, 13 | mulcld 8066 |
. . . . . 6
|
| 21 | 7, 17 | mulcld 8066 |
. . . . . 6
|
| 22 | 20, 21 | addcld 8065 |
. . . . 5
|
| 23 | 19, 22, 19 | ppncand 8396 |
. . . 4
|
| 24 | adddi 8030 |
. . . . . . . 8
| |
| 25 | 9, 24 | mp3an1 1335 |
. . . . . . 7
|
| 26 | 25 | fveq2d 5565 |
. . . . . 6
|
| 27 | simpl 109 |
. . . . . . . 8
| |
| 28 | mulcl 8025 |
. . . . . . . 8
| |
| 29 | 9, 27, 28 | sylancr 414 |
. . . . . . 7
|
| 30 | simpr 110 |
. . . . . . . 8
| |
| 31 | mulcl 8025 |
. . . . . . . 8
| |
| 32 | 9, 30, 31 | sylancr 414 |
. . . . . . 7
|
| 33 | efadd 11859 |
. . . . . . 7
| |
| 34 | 29, 32, 33 | syl2anc 411 |
. . . . . 6
|
| 35 | efival 11916 |
. . . . . . . 8
| |
| 36 | efival 11916 |
. . . . . . . 8
| |
| 37 | 35, 36 | oveqan12d 5944 |
. . . . . . 7
|
| 38 | 5, 17, 7, 13 | muladdd 8461 |
. . . . . . 7
|
| 39 | 37, 38 | eqtrd 2229 |
. . . . . 6
|
| 40 | 26, 34, 39 | 3eqtrd 2233 |
. . . . 5
|
| 41 | negicn 8246 |
. . . . . . . 8
| |
| 42 | adddi 8030 |
. . . . . . . 8
| |
| 43 | 41, 42 | mp3an1 1335 |
. . . . . . 7
|
| 44 | 43 | fveq2d 5565 |
. . . . . 6
|
| 45 | mulcl 8025 |
. . . . . . . 8
| |
| 46 | 41, 27, 45 | sylancr 414 |
. . . . . . 7
|
| 47 | mulcl 8025 |
. . . . . . . 8
| |
| 48 | 41, 30, 47 | sylancr 414 |
. . . . . . 7
|
| 49 | efadd 11859 |
. . . . . . 7
| |
| 50 | 46, 48, 49 | syl2anc 411 |
. . . . . 6
|
| 51 | efmival 11917 |
. . . . . . . 8
| |
| 52 | efmival 11917 |
. . . . . . . 8
| |
| 53 | 51, 52 | oveqan12d 5944 |
. . . . . . 7
|
| 54 | 5, 17, 7, 13 | mulsubd 8462 |
. . . . . . 7
|
| 55 | 53, 54 | eqtrd 2229 |
. . . . . 6
|
| 56 | 44, 50, 55 | 3eqtrd 2233 |
. . . . 5
|
| 57 | 40, 56 | oveq12d 5943 |
. . . 4
|
| 58 | 19 | 2timesd 9253 |
. . . 4
|
| 59 | 23, 57, 58 | 3eqtr4d 2239 |
. . 3
|
| 60 | 59 | oveq1d 5940 |
. 2
|
| 61 | 2cn 9080 |
. . . . 5
| |
| 62 | 2ap0 9102 |
. . . . 5
| |
| 63 | divcanap3 8744 |
. . . . 5
| |
| 64 | 61, 62, 63 | mp3an23 1340 |
. . . 4
|
| 65 | 19, 64 | syl 14 |
. . 3
|
| 66 | 9 | a1i 9 |
. . . . . 6
|
| 67 | 66, 11, 66, 15 | mul4d 8200 |
. . . . 5
|
| 68 | ixi 8629 |
. . . . . . 7
| |
| 69 | 68 | oveq1i 5935 |
. . . . . 6
|
| 70 | 11, 15 | mulcomd 8067 |
. . . . . . 7
|
| 71 | 70 | oveq2d 5941 |
. . . . . 6
|
| 72 | 69, 71 | eqtrid 2241 |
. . . . 5
|
| 73 | 15, 11 | mulcld 8066 |
. . . . . 6
|
| 74 | 73 | mulm1d 8455 |
. . . . 5
|
| 75 | 67, 72, 74 | 3eqtrd 2233 |
. . . 4
|
| 76 | 75 | oveq2d 5941 |
. . 3
|
| 77 | 8, 73 | negsubd 8362 |
. . 3
|
| 78 | 65, 76, 77 | 3eqtrd 2233 |
. 2
|
| 79 | 3, 60, 78 | 3eqtrd 2233 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-pre-mulext 8016 ax-arch 8017 ax-caucvg 8018 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-disj 4012 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-oadd 6487 df-er 6601 df-en 6809 df-dom 6810 df-fin 6811 df-sup 7059 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 df-div 8719 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-n0 9269 df-z 9346 df-uz 9621 df-q 9713 df-rp 9748 df-ico 9988 df-fz 10103 df-fzo 10237 df-seqfrec 10559 df-exp 10650 df-fac 10837 df-bc 10859 df-ihash 10887 df-cj 11026 df-re 11027 df-im 11028 df-rsqrt 11182 df-abs 11183 df-clim 11463 df-sumdc 11538 df-ef 11832 df-sin 11834 df-cos 11835 |
| This theorem is referenced by: tanaddaplem 11922 tanaddap 11923 cossub 11925 sinmul 11928 cosmul 11929 addcos 11930 subcos 11931 sincossq 11932 cos2t 11934 cos12dec 11952 demoivreALT 11958 cosppi 15162 coshalfpip 15166 |
| Copyright terms: Public domain | W3C validator |