| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulreim | Unicode version | ||
| Description: Complex multiplication in terms of real and imaginary parts. (Contributed by Jim Kingdon, 23-Feb-2020.) |
| Ref | Expression |
|---|---|
| mulreim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . . 4
| |
| 2 | 1 | recnd 8101 |
. . 3
|
| 3 | ax-icn 8020 |
. . . . 5
| |
| 4 | 3 | a1i 9 |
. . . 4
|
| 5 | simplr 528 |
. . . . 5
| |
| 6 | 5 | recnd 8101 |
. . . 4
|
| 7 | 4, 6 | mulcld 8093 |
. . 3
|
| 8 | simprl 529 |
. . . 4
| |
| 9 | 8 | recnd 8101 |
. . 3
|
| 10 | simprr 531 |
. . . . 5
| |
| 11 | 10 | recnd 8101 |
. . . 4
|
| 12 | 4, 11 | mulcld 8093 |
. . 3
|
| 13 | 2, 7, 9, 12 | muladdd 8488 |
. 2
|
| 14 | 4, 11, 4, 6 | mul4d 8227 |
. . . . . 6
|
| 15 | ixi 8656 |
. . . . . . 7
| |
| 16 | 15 | oveq1i 5954 |
. . . . . 6
|
| 17 | 14, 16 | eqtrdi 2254 |
. . . . 5
|
| 18 | 11, 6 | mulcld 8093 |
. . . . . 6
|
| 19 | 18 | mulm1d 8482 |
. . . . 5
|
| 20 | 11, 6 | mulcomd 8094 |
. . . . . 6
|
| 21 | 20 | negeqd 8267 |
. . . . 5
|
| 22 | 17, 19, 21 | 3eqtrd 2242 |
. . . 4
|
| 23 | 22 | oveq2d 5960 |
. . 3
|
| 24 | 11, 2 | mulcld 8093 |
. . . . . 6
|
| 25 | 4, 24 | mulcld 8093 |
. . . . 5
|
| 26 | 9, 6 | mulcld 8093 |
. . . . . 6
|
| 27 | 4, 26 | mulcld 8093 |
. . . . 5
|
| 28 | 25, 27 | addcomd 8223 |
. . . 4
|
| 29 | 2, 4, 11 | mul12d 8224 |
. . . . . 6
|
| 30 | 2, 11 | mulcomd 8094 |
. . . . . . 7
|
| 31 | 30 | oveq2d 5960 |
. . . . . 6
|
| 32 | 29, 31 | eqtrd 2238 |
. . . . 5
|
| 33 | 9, 4, 6 | mul12d 8224 |
. . . . 5
|
| 34 | 32, 33 | oveq12d 5962 |
. . . 4
|
| 35 | 4, 26, 24 | adddid 8097 |
. . . 4
|
| 36 | 28, 34, 35 | 3eqtr4d 2248 |
. . 3
|
| 37 | 23, 36 | oveq12d 5962 |
. 2
|
| 38 | 13, 37 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 ax-resscn 8017 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-sub 8245 df-neg 8246 |
| This theorem is referenced by: mulext1 8685 |
| Copyright terms: Public domain | W3C validator |