Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulreim | Unicode version |
Description: Complex multiplication in terms of real and imaginary parts. (Contributed by Jim Kingdon, 23-Feb-2020.) |
Ref | Expression |
---|---|
mulreim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 519 | . . . 4 | |
2 | 1 | recnd 7927 | . . 3 |
3 | ax-icn 7848 | . . . . 5 | |
4 | 3 | a1i 9 | . . . 4 |
5 | simplr 520 | . . . . 5 | |
6 | 5 | recnd 7927 | . . . 4 |
7 | 4, 6 | mulcld 7919 | . . 3 |
8 | simprl 521 | . . . 4 | |
9 | 8 | recnd 7927 | . . 3 |
10 | simprr 522 | . . . . 5 | |
11 | 10 | recnd 7927 | . . . 4 |
12 | 4, 11 | mulcld 7919 | . . 3 |
13 | 2, 7, 9, 12 | muladdd 8314 | . 2 |
14 | 4, 11, 4, 6 | mul4d 8053 | . . . . . 6 |
15 | ixi 8481 | . . . . . . 7 | |
16 | 15 | oveq1i 5852 | . . . . . 6 |
17 | 14, 16 | eqtrdi 2215 | . . . . 5 |
18 | 11, 6 | mulcld 7919 | . . . . . 6 |
19 | 18 | mulm1d 8308 | . . . . 5 |
20 | 11, 6 | mulcomd 7920 | . . . . . 6 |
21 | 20 | negeqd 8093 | . . . . 5 |
22 | 17, 19, 21 | 3eqtrd 2202 | . . . 4 |
23 | 22 | oveq2d 5858 | . . 3 |
24 | 11, 2 | mulcld 7919 | . . . . . 6 |
25 | 4, 24 | mulcld 7919 | . . . . 5 |
26 | 9, 6 | mulcld 7919 | . . . . . 6 |
27 | 4, 26 | mulcld 7919 | . . . . 5 |
28 | 25, 27 | addcomd 8049 | . . . 4 |
29 | 2, 4, 11 | mul12d 8050 | . . . . . 6 |
30 | 2, 11 | mulcomd 7920 | . . . . . . 7 |
31 | 30 | oveq2d 5858 | . . . . . 6 |
32 | 29, 31 | eqtrd 2198 | . . . . 5 |
33 | 9, 4, 6 | mul12d 8050 | . . . . 5 |
34 | 32, 33 | oveq12d 5860 | . . . 4 |
35 | 4, 26, 24 | adddid 7923 | . . . 4 |
36 | 28, 34, 35 | 3eqtr4d 2208 | . . 3 |
37 | 23, 36 | oveq12d 5860 | . 2 |
38 | 13, 37 | eqtrd 2198 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 (class class class)co 5842 cc 7751 cr 7752 c1 7754 ci 7755 caddc 7756 cmul 7758 cneg 8070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sub 8071 df-neg 8072 |
This theorem is referenced by: mulext1 8510 |
Copyright terms: Public domain | W3C validator |