ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulreim Unicode version

Theorem mulreim 8677
Description: Complex multiplication in terms of real and imaginary parts. (Contributed by Jim Kingdon, 23-Feb-2020.)
Assertion
Ref Expression
mulreim  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  =  ( ( ( A  x.  C )  +  -u ( B  x.  D ) )  +  ( _i  x.  (
( C  x.  B
)  +  ( D  x.  A ) ) ) ) )

Proof of Theorem mulreim
StepHypRef Expression
1 simpll 527 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  A  e.  RR )
21recnd 8101 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  A  e.  CC )
3 ax-icn 8020 . . . . 5  |-  _i  e.  CC
43a1i 9 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  _i  e.  CC )
5 simplr 528 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  B  e.  RR )
65recnd 8101 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  B  e.  CC )
74, 6mulcld 8093 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( _i  x.  B
)  e.  CC )
8 simprl 529 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  C  e.  RR )
98recnd 8101 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  C  e.  CC )
10 simprr 531 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  D  e.  RR )
1110recnd 8101 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  D  e.  CC )
124, 11mulcld 8093 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( _i  x.  D
)  e.  CC )
132, 7, 9, 12muladdd 8488 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  =  ( ( ( A  x.  C )  +  ( ( _i  x.  D )  x.  ( _i  x.  B
) ) )  +  ( ( A  x.  ( _i  x.  D
) )  +  ( C  x.  ( _i  x.  B ) ) ) ) )
144, 11, 4, 6mul4d 8227 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( _i  x.  D )  x.  (
_i  x.  B )
)  =  ( ( _i  x.  _i )  x.  ( D  x.  B ) ) )
15 ixi 8656 . . . . . . 7  |-  ( _i  x.  _i )  = 
-u 1
1615oveq1i 5954 . . . . . 6  |-  ( ( _i  x.  _i )  x.  ( D  x.  B ) )  =  ( -u 1  x.  ( D  x.  B
) )
1714, 16eqtrdi 2254 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( _i  x.  D )  x.  (
_i  x.  B )
)  =  ( -u
1  x.  ( D  x.  B ) ) )
1811, 6mulcld 8093 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( D  x.  B
)  e.  CC )
1918mulm1d 8482 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( -u 1  x.  ( D  x.  B )
)  =  -u ( D  x.  B )
)
2011, 6mulcomd 8094 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( D  x.  B
)  =  ( B  x.  D ) )
2120negeqd 8267 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  -u ( D  x.  B
)  =  -u ( B  x.  D )
)
2217, 19, 213eqtrd 2242 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( _i  x.  D )  x.  (
_i  x.  B )
)  =  -u ( B  x.  D )
)
2322oveq2d 5960 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  x.  C )  +  ( ( _i  x.  D
)  x.  ( _i  x.  B ) ) )  =  ( ( A  x.  C )  +  -u ( B  x.  D ) ) )
2411, 2mulcld 8093 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( D  x.  A
)  e.  CC )
254, 24mulcld 8093 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( _i  x.  ( D  x.  A )
)  e.  CC )
269, 6mulcld 8093 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( C  x.  B
)  e.  CC )
274, 26mulcld 8093 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( _i  x.  ( C  x.  B )
)  e.  CC )
2825, 27addcomd 8223 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( _i  x.  ( D  x.  A
) )  +  ( _i  x.  ( C  x.  B ) ) )  =  ( ( _i  x.  ( C  x.  B ) )  +  ( _i  x.  ( D  x.  A
) ) ) )
292, 4, 11mul12d 8224 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  x.  (
_i  x.  D )
)  =  ( _i  x.  ( A  x.  D ) ) )
302, 11mulcomd 8094 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  x.  D
)  =  ( D  x.  A ) )
3130oveq2d 5960 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( _i  x.  ( A  x.  D )
)  =  ( _i  x.  ( D  x.  A ) ) )
3229, 31eqtrd 2238 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  x.  (
_i  x.  D )
)  =  ( _i  x.  ( D  x.  A ) ) )
339, 4, 6mul12d 8224 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( C  x.  (
_i  x.  B )
)  =  ( _i  x.  ( C  x.  B ) ) )
3432, 33oveq12d 5962 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  x.  ( _i  x.  D
) )  +  ( C  x.  ( _i  x.  B ) ) )  =  ( ( _i  x.  ( D  x.  A ) )  +  ( _i  x.  ( C  x.  B
) ) ) )
354, 26, 24adddid 8097 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( _i  x.  (
( C  x.  B
)  +  ( D  x.  A ) ) )  =  ( ( _i  x.  ( C  x.  B ) )  +  ( _i  x.  ( D  x.  A
) ) ) )
3628, 34, 353eqtr4d 2248 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  x.  ( _i  x.  D
) )  +  ( C  x.  ( _i  x.  B ) ) )  =  ( _i  x.  ( ( C  x.  B )  +  ( D  x.  A
) ) ) )
3723, 36oveq12d 5962 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( ( A  x.  C )  +  ( ( _i  x.  D )  x.  (
_i  x.  B )
) )  +  ( ( A  x.  (
_i  x.  D )
)  +  ( C  x.  ( _i  x.  B ) ) ) )  =  ( ( ( A  x.  C
)  +  -u ( B  x.  D )
)  +  ( _i  x.  ( ( C  x.  B )  +  ( D  x.  A
) ) ) ) )
3813, 37eqtrd 2238 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) )  x.  ( C  +  ( _i  x.  D ) ) )  =  ( ( ( A  x.  C )  +  -u ( B  x.  D ) )  +  ( _i  x.  (
( C  x.  B
)  +  ( D  x.  A ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176  (class class class)co 5944   CCcc 7923   RRcr 7924   1c1 7926   _ici 7927    + caddc 7928    x. cmul 7930   -ucneg 8244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585  ax-resscn 8017  ax-1cn 8018  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-sub 8245  df-neg 8246
This theorem is referenced by:  mulext1  8685
  Copyright terms: Public domain W3C validator