| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulreim | Unicode version | ||
| Description: Complex multiplication in terms of real and imaginary parts. (Contributed by Jim Kingdon, 23-Feb-2020.) |
| Ref | Expression |
|---|---|
| mulreim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . . 4
| |
| 2 | 1 | recnd 8055 |
. . 3
|
| 3 | ax-icn 7974 |
. . . . 5
| |
| 4 | 3 | a1i 9 |
. . . 4
|
| 5 | simplr 528 |
. . . . 5
| |
| 6 | 5 | recnd 8055 |
. . . 4
|
| 7 | 4, 6 | mulcld 8047 |
. . 3
|
| 8 | simprl 529 |
. . . 4
| |
| 9 | 8 | recnd 8055 |
. . 3
|
| 10 | simprr 531 |
. . . . 5
| |
| 11 | 10 | recnd 8055 |
. . . 4
|
| 12 | 4, 11 | mulcld 8047 |
. . 3
|
| 13 | 2, 7, 9, 12 | muladdd 8442 |
. 2
|
| 14 | 4, 11, 4, 6 | mul4d 8181 |
. . . . . 6
|
| 15 | ixi 8610 |
. . . . . . 7
| |
| 16 | 15 | oveq1i 5932 |
. . . . . 6
|
| 17 | 14, 16 | eqtrdi 2245 |
. . . . 5
|
| 18 | 11, 6 | mulcld 8047 |
. . . . . 6
|
| 19 | 18 | mulm1d 8436 |
. . . . 5
|
| 20 | 11, 6 | mulcomd 8048 |
. . . . . 6
|
| 21 | 20 | negeqd 8221 |
. . . . 5
|
| 22 | 17, 19, 21 | 3eqtrd 2233 |
. . . 4
|
| 23 | 22 | oveq2d 5938 |
. . 3
|
| 24 | 11, 2 | mulcld 8047 |
. . . . . 6
|
| 25 | 4, 24 | mulcld 8047 |
. . . . 5
|
| 26 | 9, 6 | mulcld 8047 |
. . . . . 6
|
| 27 | 4, 26 | mulcld 8047 |
. . . . 5
|
| 28 | 25, 27 | addcomd 8177 |
. . . 4
|
| 29 | 2, 4, 11 | mul12d 8178 |
. . . . . 6
|
| 30 | 2, 11 | mulcomd 8048 |
. . . . . . 7
|
| 31 | 30 | oveq2d 5938 |
. . . . . 6
|
| 32 | 29, 31 | eqtrd 2229 |
. . . . 5
|
| 33 | 9, 4, 6 | mul12d 8178 |
. . . . 5
|
| 34 | 32, 33 | oveq12d 5940 |
. . . 4
|
| 35 | 4, 26, 24 | adddid 8051 |
. . . 4
|
| 36 | 28, 34, 35 | 3eqtr4d 2239 |
. . 3
|
| 37 | 23, 36 | oveq12d 5940 |
. 2
|
| 38 | 13, 37 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 df-neg 8200 |
| This theorem is referenced by: mulext1 8639 |
| Copyright terms: Public domain | W3C validator |