Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > subdird | Unicode version |
Description: Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mulm1d.1 | |
mulnegd.2 | |
subdid.3 |
Ref | Expression |
---|---|
subdird |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1d.1 | . 2 | |
2 | mulnegd.2 | . 2 | |
3 | subdid.3 | . 2 | |
4 | subdir 8244 | . 2 | |
5 | 1, 2, 3, 4 | syl3anc 1220 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 wcel 2128 (class class class)co 5818 cc 7713 cmul 7720 cmin 8029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-setind 4494 ax-resscn 7807 ax-1cn 7808 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-distr 7819 ax-i2m1 7820 ax-0id 7823 ax-rnegex 7824 ax-cnre 7826 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-sub 8031 |
This theorem is referenced by: mulsubfacd 8276 ltmul1a 8449 lemul1a 8712 xp1d2m1eqxm1d2 9068 div4p1lem1div2 9069 lincmb01cmp 9889 iccf1o 9890 qbtwnrelemcalc 10137 modqmul1 10258 remullem 10753 resqrexlemcalc1 10896 bdtrilem 11120 mulcn2 11191 fsumparts 11349 geo2sum 11393 dvmulxxbr 13026 dvrecap 13037 sin0pilem1 13062 tangtx 13119 logdivlti 13162 |
Copyright terms: Public domain | W3C validator |