ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subdird Unicode version

Theorem subdird 8346
Description: Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
mulm1d.1  |-  ( ph  ->  A  e.  CC )
mulnegd.2  |-  ( ph  ->  B  e.  CC )
subdid.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
subdird  |-  ( ph  ->  ( ( A  -  B )  x.  C
)  =  ( ( A  x.  C )  -  ( B  x.  C ) ) )

Proof of Theorem subdird
StepHypRef Expression
1 mulm1d.1 . 2  |-  ( ph  ->  A  e.  CC )
2 mulnegd.2 . 2  |-  ( ph  ->  B  e.  CC )
3 subdid.3 . 2  |-  ( ph  ->  C  e.  CC )
4 subdir 8317 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  B
)  x.  C )  =  ( ( A  x.  C )  -  ( B  x.  C
) ) )
51, 2, 3, 4syl3anc 1238 1  |-  ( ph  ->  ( ( A  -  B )  x.  C
)  =  ( ( A  x.  C )  -  ( B  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2146  (class class class)co 5865   CCcc 7784    x. cmul 7791    - cmin 8102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-setind 4530  ax-resscn 7878  ax-1cn 7879  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-sub 8104
This theorem is referenced by:  mulsubfacd  8349  ltmul1a  8522  lemul1a  8788  xp1d2m1eqxm1d2  9144  div4p1lem1div2  9145  lincmb01cmp  9974  iccf1o  9975  qbtwnrelemcalc  10226  modqmul1  10347  remullem  10848  resqrexlemcalc1  10991  bdtrilem  11215  mulcn2  11288  fsumparts  11446  geo2sum  11490  modprm0  12221  mul4sqlem  12358  dvmulxxbr  13737  dvrecap  13748  sin0pilem1  13773  tangtx  13830  logdivlti  13873
  Copyright terms: Public domain W3C validator