ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subdird Unicode version

Theorem subdird 8273
Description: Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
mulm1d.1  |-  ( ph  ->  A  e.  CC )
mulnegd.2  |-  ( ph  ->  B  e.  CC )
subdid.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
subdird  |-  ( ph  ->  ( ( A  -  B )  x.  C
)  =  ( ( A  x.  C )  -  ( B  x.  C ) ) )

Proof of Theorem subdird
StepHypRef Expression
1 mulm1d.1 . 2  |-  ( ph  ->  A  e.  CC )
2 mulnegd.2 . 2  |-  ( ph  ->  B  e.  CC )
3 subdid.3 . 2  |-  ( ph  ->  C  e.  CC )
4 subdir 8244 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  B
)  x.  C )  =  ( ( A  x.  C )  -  ( B  x.  C
) ) )
51, 2, 3, 4syl3anc 1220 1  |-  ( ph  ->  ( ( A  -  B )  x.  C
)  =  ( ( A  x.  C )  -  ( B  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335    e. wcel 2128  (class class class)co 5818   CCcc 7713    x. cmul 7720    - cmin 8029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-setind 4494  ax-resscn 7807  ax-1cn 7808  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-distr 7819  ax-i2m1 7820  ax-0id 7823  ax-rnegex 7824  ax-cnre 7826
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-iota 5132  df-fun 5169  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-sub 8031
This theorem is referenced by:  mulsubfacd  8276  ltmul1a  8449  lemul1a  8712  xp1d2m1eqxm1d2  9068  div4p1lem1div2  9069  lincmb01cmp  9889  iccf1o  9890  qbtwnrelemcalc  10137  modqmul1  10258  remullem  10753  resqrexlemcalc1  10896  bdtrilem  11120  mulcn2  11191  fsumparts  11349  geo2sum  11393  dvmulxxbr  13026  dvrecap  13037  sin0pilem1  13062  tangtx  13119  logdivlti  13162
  Copyright terms: Public domain W3C validator