ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgpress Unicode version

Theorem mgpress 13808
Description: Subgroup commutes with the multiplicative group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.)
Hypotheses
Ref Expression
mgpress.1  |-  S  =  ( Rs  A )
mgpress.2  |-  M  =  (mulGrp `  R )
Assertion
Ref Expression
mgpress  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  (mulGrp `  S ) )

Proof of Theorem mgpress
StepHypRef Expression
1 mgpress.2 . . . . 5  |-  M  =  (mulGrp `  R )
2 eqid 2207 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
31, 2mgpvalg 13800 . . . 4  |-  ( R  e.  V  ->  M  =  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
)
43adantr 276 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  M  =  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
)
54oveq1d 5982 . 2  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. )  =  (
( R sSet  <. ( +g  ` 
ndx ) ,  ( .r `  R )
>. ) sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) ) >.
) )
61mgpex 13802 . . . 4  |-  ( R  e.  V  ->  M  e.  _V )
7 ressvalsets 13011 . . . 4  |-  ( ( M  e.  _V  /\  A  e.  W )  ->  ( Ms  A )  =  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  M
) ) >. )
)
86, 7sylan 283 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  M
) ) >. )
)
9 eqid 2207 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
101, 9mgpbasg 13803 . . . . . . 7  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  M
) )
1110adantr 276 . . . . . 6  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Base `  R
)  =  ( Base `  M ) )
1211ineq2d 3382 . . . . 5  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( A  i^i  ( Base `  R ) )  =  ( A  i^i  ( Base `  M )
) )
1312opeq2d 3840 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  -> 
<. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >.  =  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  M ) )
>. )
1413oveq2d 5983 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. )  =  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  M
) ) >. )
)
158, 14eqtr4d 2243 . 2  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. )
)
16 mgpress.1 . . . . 5  |-  S  =  ( Rs  A )
17 ressvalsets 13011 . . . . 5  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Rs  A )  =  ( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. )
)
1816, 17eqtrid 2252 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  S  =  ( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. )
)
1916, 2ressmulrg 13092 . . . . . . 7  |-  ( ( A  e.  W  /\  R  e.  V )  ->  ( .r `  R
)  =  ( .r
`  S ) )
2019ancoms 268 . . . . . 6  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( .r `  R
)  =  ( .r
`  S ) )
2120eqcomd 2213 . . . . 5  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( .r `  S
)  =  ( .r
`  R ) )
2221opeq2d 3840 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  -> 
<. ( +g  `  ndx ) ,  ( .r `  S ) >.  =  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
2318, 22oveq12d 5985 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( S sSet  <. ( +g  `  ndx ) ,  ( .r `  S
) >. )  =  ( ( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. ) sSet  <. ( +g  ` 
ndx ) ,  ( .r `  R )
>. ) )
24 ressex 13012 . . . . 5  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Rs  A )  e.  _V )
2516, 24eqeltrid 2294 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  S  e.  _V )
26 eqid 2207 . . . . 5  |-  (mulGrp `  S )  =  (mulGrp `  S )
27 eqid 2207 . . . . 5  |-  ( .r
`  S )  =  ( .r `  S
)
2826, 27mgpvalg 13800 . . . 4  |-  ( S  e.  _V  ->  (mulGrp `  S )  =  ( S sSet  <. ( +g  `  ndx ) ,  ( .r `  S ) >. )
)
2925, 28syl 14 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  (mulGrp `  S )  =  ( S sSet  <. ( +g  `  ndx ) ,  ( .r `  S ) >. )
)
30 plusgslid 13059 . . . . . 6  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
3130simpri 113 . . . . 5  |-  ( +g  ` 
ndx )  e.  NN
3231a1i 9 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( +g  `  ndx )  e.  NN )
33 basendxnn 13003 . . . . 5  |-  ( Base `  ndx )  e.  NN
3433a1i 9 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Base `  ndx )  e.  NN )
35 simpl 109 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  R  e.  V )
36 basendxnplusgndx 13072 . . . . . 6  |-  ( Base `  ndx )  =/=  ( +g  `  ndx )
3736necomi 2463 . . . . 5  |-  ( +g  ` 
ndx )  =/=  ( Base `  ndx )
3837a1i 9 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( +g  `  ndx )  =/=  ( Base `  ndx ) )
39 mulrslid 13079 . . . . . 6  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
4039slotex 12974 . . . . 5  |-  ( R  e.  V  ->  ( .r `  R )  e. 
_V )
4140adantr 276 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( .r `  R
)  e.  _V )
42 inex1g 4196 . . . . 5  |-  ( A  e.  W  ->  ( A  i^i  ( Base `  R
) )  e.  _V )
4342adantl 277 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( A  i^i  ( Base `  R ) )  e.  _V )
4432, 34, 35, 38, 41, 43setscomd 12988 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. ) sSet  <.
( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. )  =  (
( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) ) >.
) sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
)
4523, 29, 443eqtr4d 2250 . 2  |-  ( ( R  e.  V  /\  A  e.  W )  ->  (mulGrp `  S )  =  ( ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. ) sSet  <.
( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. ) )
465, 15, 453eqtr4d 2250 1  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  (mulGrp `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    =/= wne 2378   _Vcvv 2776    i^i cin 3173   <.cop 3646   ` cfv 5290  (class class class)co 5967   NNcn 9071   ndxcnx 12944   sSet csts 12945  Slot cslot 12946   Basecbs 12947   ↾s cress 12948   +g cplusg 13024   .rcmulr 13025  mulGrpcmgp 13797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-mgp 13798
This theorem is referenced by:  rdivmuldivd  14021  subrgcrng  14102  subrgsubm  14111  resrhm  14125  resrhm2b  14126  zringmpg  14483
  Copyright terms: Public domain W3C validator