ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgpress Unicode version

Theorem mgpress 13487
Description: Subgroup commutes with the multiplicative group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.)
Hypotheses
Ref Expression
mgpress.1  |-  S  =  ( Rs  A )
mgpress.2  |-  M  =  (mulGrp `  R )
Assertion
Ref Expression
mgpress  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  (mulGrp `  S ) )

Proof of Theorem mgpress
StepHypRef Expression
1 mgpress.2 . . . . 5  |-  M  =  (mulGrp `  R )
2 eqid 2196 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
31, 2mgpvalg 13479 . . . 4  |-  ( R  e.  V  ->  M  =  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
)
43adantr 276 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  M  =  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
)
54oveq1d 5937 . 2  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. )  =  (
( R sSet  <. ( +g  ` 
ndx ) ,  ( .r `  R )
>. ) sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) ) >.
) )
61mgpex 13481 . . . 4  |-  ( R  e.  V  ->  M  e.  _V )
7 ressvalsets 12742 . . . 4  |-  ( ( M  e.  _V  /\  A  e.  W )  ->  ( Ms  A )  =  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  M
) ) >. )
)
86, 7sylan 283 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  M
) ) >. )
)
9 eqid 2196 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
101, 9mgpbasg 13482 . . . . . . 7  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  M
) )
1110adantr 276 . . . . . 6  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Base `  R
)  =  ( Base `  M ) )
1211ineq2d 3364 . . . . 5  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( A  i^i  ( Base `  R ) )  =  ( A  i^i  ( Base `  M )
) )
1312opeq2d 3815 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  -> 
<. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >.  =  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  M ) )
>. )
1413oveq2d 5938 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. )  =  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  M
) ) >. )
)
158, 14eqtr4d 2232 . 2  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. )
)
16 mgpress.1 . . . . 5  |-  S  =  ( Rs  A )
17 ressvalsets 12742 . . . . 5  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Rs  A )  =  ( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. )
)
1816, 17eqtrid 2241 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  S  =  ( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. )
)
1916, 2ressmulrg 12822 . . . . . . 7  |-  ( ( A  e.  W  /\  R  e.  V )  ->  ( .r `  R
)  =  ( .r
`  S ) )
2019ancoms 268 . . . . . 6  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( .r `  R
)  =  ( .r
`  S ) )
2120eqcomd 2202 . . . . 5  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( .r `  S
)  =  ( .r
`  R ) )
2221opeq2d 3815 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  -> 
<. ( +g  `  ndx ) ,  ( .r `  S ) >.  =  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
2318, 22oveq12d 5940 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( S sSet  <. ( +g  `  ndx ) ,  ( .r `  S
) >. )  =  ( ( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. ) sSet  <. ( +g  ` 
ndx ) ,  ( .r `  R )
>. ) )
24 ressex 12743 . . . . 5  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Rs  A )  e.  _V )
2516, 24eqeltrid 2283 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  S  e.  _V )
26 eqid 2196 . . . . 5  |-  (mulGrp `  S )  =  (mulGrp `  S )
27 eqid 2196 . . . . 5  |-  ( .r
`  S )  =  ( .r `  S
)
2826, 27mgpvalg 13479 . . . 4  |-  ( S  e.  _V  ->  (mulGrp `  S )  =  ( S sSet  <. ( +g  `  ndx ) ,  ( .r `  S ) >. )
)
2925, 28syl 14 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  (mulGrp `  S )  =  ( S sSet  <. ( +g  `  ndx ) ,  ( .r `  S ) >. )
)
30 plusgslid 12790 . . . . . 6  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
3130simpri 113 . . . . 5  |-  ( +g  ` 
ndx )  e.  NN
3231a1i 9 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( +g  `  ndx )  e.  NN )
33 basendxnn 12734 . . . . 5  |-  ( Base `  ndx )  e.  NN
3433a1i 9 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Base `  ndx )  e.  NN )
35 simpl 109 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  R  e.  V )
36 basendxnplusgndx 12802 . . . . . 6  |-  ( Base `  ndx )  =/=  ( +g  `  ndx )
3736necomi 2452 . . . . 5  |-  ( +g  ` 
ndx )  =/=  ( Base `  ndx )
3837a1i 9 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( +g  `  ndx )  =/=  ( Base `  ndx ) )
39 mulrslid 12809 . . . . . 6  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
4039slotex 12705 . . . . 5  |-  ( R  e.  V  ->  ( .r `  R )  e. 
_V )
4140adantr 276 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( .r `  R
)  e.  _V )
42 inex1g 4169 . . . . 5  |-  ( A  e.  W  ->  ( A  i^i  ( Base `  R
) )  e.  _V )
4342adantl 277 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( A  i^i  ( Base `  R ) )  e.  _V )
4432, 34, 35, 38, 41, 43setscomd 12719 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. ) sSet  <.
( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. )  =  (
( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) ) >.
) sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
)
4523, 29, 443eqtr4d 2239 . 2  |-  ( ( R  e.  V  /\  A  e.  W )  ->  (mulGrp `  S )  =  ( ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. ) sSet  <.
( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. ) )
465, 15, 453eqtr4d 2239 1  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  (mulGrp `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    =/= wne 2367   _Vcvv 2763    i^i cin 3156   <.cop 3625   ` cfv 5258  (class class class)co 5922   NNcn 8990   ndxcnx 12675   sSet csts 12676  Slot cslot 12677   Basecbs 12678   ↾s cress 12679   +g cplusg 12755   .rcmulr 12756  mulGrpcmgp 13476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-mgp 13477
This theorem is referenced by:  rdivmuldivd  13700  subrgcrng  13781  subrgsubm  13790  resrhm  13804  resrhm2b  13805  zringmpg  14162
  Copyright terms: Public domain W3C validator