ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgpress Unicode version

Theorem mgpress 13430
Description: Subgroup commutes with the multiplicative group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.)
Hypotheses
Ref Expression
mgpress.1  |-  S  =  ( Rs  A )
mgpress.2  |-  M  =  (mulGrp `  R )
Assertion
Ref Expression
mgpress  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  (mulGrp `  S ) )

Proof of Theorem mgpress
StepHypRef Expression
1 mgpress.2 . . . . 5  |-  M  =  (mulGrp `  R )
2 eqid 2193 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
31, 2mgpvalg 13422 . . . 4  |-  ( R  e.  V  ->  M  =  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
)
43adantr 276 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  M  =  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
)
54oveq1d 5934 . 2  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. )  =  (
( R sSet  <. ( +g  ` 
ndx ) ,  ( .r `  R )
>. ) sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) ) >.
) )
61mgpex 13424 . . . 4  |-  ( R  e.  V  ->  M  e.  _V )
7 ressvalsets 12685 . . . 4  |-  ( ( M  e.  _V  /\  A  e.  W )  ->  ( Ms  A )  =  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  M
) ) >. )
)
86, 7sylan 283 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  M
) ) >. )
)
9 eqid 2193 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
101, 9mgpbasg 13425 . . . . . . 7  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  M
) )
1110adantr 276 . . . . . 6  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Base `  R
)  =  ( Base `  M ) )
1211ineq2d 3361 . . . . 5  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( A  i^i  ( Base `  R ) )  =  ( A  i^i  ( Base `  M )
) )
1312opeq2d 3812 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  -> 
<. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >.  =  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  M ) )
>. )
1413oveq2d 5935 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. )  =  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  M
) ) >. )
)
158, 14eqtr4d 2229 . 2  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. )
)
16 mgpress.1 . . . . 5  |-  S  =  ( Rs  A )
17 ressvalsets 12685 . . . . 5  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Rs  A )  =  ( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. )
)
1816, 17eqtrid 2238 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  S  =  ( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. )
)
1916, 2ressmulrg 12765 . . . . . . 7  |-  ( ( A  e.  W  /\  R  e.  V )  ->  ( .r `  R
)  =  ( .r
`  S ) )
2019ancoms 268 . . . . . 6  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( .r `  R
)  =  ( .r
`  S ) )
2120eqcomd 2199 . . . . 5  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( .r `  S
)  =  ( .r
`  R ) )
2221opeq2d 3812 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  -> 
<. ( +g  `  ndx ) ,  ( .r `  S ) >.  =  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
2318, 22oveq12d 5937 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( S sSet  <. ( +g  `  ndx ) ,  ( .r `  S
) >. )  =  ( ( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. ) sSet  <. ( +g  ` 
ndx ) ,  ( .r `  R )
>. ) )
24 ressex 12686 . . . . 5  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Rs  A )  e.  _V )
2516, 24eqeltrid 2280 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  S  e.  _V )
26 eqid 2193 . . . . 5  |-  (mulGrp `  S )  =  (mulGrp `  S )
27 eqid 2193 . . . . 5  |-  ( .r
`  S )  =  ( .r `  S
)
2826, 27mgpvalg 13422 . . . 4  |-  ( S  e.  _V  ->  (mulGrp `  S )  =  ( S sSet  <. ( +g  `  ndx ) ,  ( .r `  S ) >. )
)
2925, 28syl 14 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  (mulGrp `  S )  =  ( S sSet  <. ( +g  `  ndx ) ,  ( .r `  S ) >. )
)
30 plusgslid 12733 . . . . . 6  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
3130simpri 113 . . . . 5  |-  ( +g  ` 
ndx )  e.  NN
3231a1i 9 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( +g  `  ndx )  e.  NN )
33 basendxnn 12677 . . . . 5  |-  ( Base `  ndx )  e.  NN
3433a1i 9 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Base `  ndx )  e.  NN )
35 simpl 109 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  R  e.  V )
36 basendxnplusgndx 12745 . . . . . 6  |-  ( Base `  ndx )  =/=  ( +g  `  ndx )
3736necomi 2449 . . . . 5  |-  ( +g  ` 
ndx )  =/=  ( Base `  ndx )
3837a1i 9 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( +g  `  ndx )  =/=  ( Base `  ndx ) )
39 mulrslid 12752 . . . . . 6  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
4039slotex 12648 . . . . 5  |-  ( R  e.  V  ->  ( .r `  R )  e. 
_V )
4140adantr 276 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( .r `  R
)  e.  _V )
42 inex1g 4166 . . . . 5  |-  ( A  e.  W  ->  ( A  i^i  ( Base `  R
) )  e.  _V )
4342adantl 277 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( A  i^i  ( Base `  R ) )  e.  _V )
4432, 34, 35, 38, 41, 43setscomd 12662 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. ) sSet  <.
( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. )  =  (
( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) ) >.
) sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
)
4523, 29, 443eqtr4d 2236 . 2  |-  ( ( R  e.  V  /\  A  e.  W )  ->  (mulGrp `  S )  =  ( ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. ) sSet  <.
( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. ) )
465, 15, 453eqtr4d 2236 1  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  (mulGrp `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    =/= wne 2364   _Vcvv 2760    i^i cin 3153   <.cop 3622   ` cfv 5255  (class class class)co 5919   NNcn 8984   ndxcnx 12618   sSet csts 12619  Slot cslot 12620   Basecbs 12621   ↾s cress 12622   +g cplusg 12698   .rcmulr 12699  mulGrpcmgp 13419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-mgp 13420
This theorem is referenced by:  rdivmuldivd  13643  subrgcrng  13724  subrgsubm  13733  resrhm  13747  resrhm2b  13748  zringmpg  14105
  Copyright terms: Public domain W3C validator