| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgpress | Unicode version | ||
| Description: Subgroup commutes with the multiplicative group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.) |
| Ref | Expression |
|---|---|
| mgpress.1 |
|
| mgpress.2 |
|
| Ref | Expression |
|---|---|
| mgpress |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpress.2 |
. . . . 5
| |
| 2 | eqid 2207 |
. . . . 5
| |
| 3 | 1, 2 | mgpvalg 13800 |
. . . 4
|
| 4 | 3 | adantr 276 |
. . 3
|
| 5 | 4 | oveq1d 5982 |
. 2
|
| 6 | 1 | mgpex 13802 |
. . . 4
|
| 7 | ressvalsets 13011 |
. . . 4
| |
| 8 | 6, 7 | sylan 283 |
. . 3
|
| 9 | eqid 2207 |
. . . . . . . 8
| |
| 10 | 1, 9 | mgpbasg 13803 |
. . . . . . 7
|
| 11 | 10 | adantr 276 |
. . . . . 6
|
| 12 | 11 | ineq2d 3382 |
. . . . 5
|
| 13 | 12 | opeq2d 3840 |
. . . 4
|
| 14 | 13 | oveq2d 5983 |
. . 3
|
| 15 | 8, 14 | eqtr4d 2243 |
. 2
|
| 16 | mgpress.1 |
. . . . 5
| |
| 17 | ressvalsets 13011 |
. . . . 5
| |
| 18 | 16, 17 | eqtrid 2252 |
. . . 4
|
| 19 | 16, 2 | ressmulrg 13092 |
. . . . . . 7
|
| 20 | 19 | ancoms 268 |
. . . . . 6
|
| 21 | 20 | eqcomd 2213 |
. . . . 5
|
| 22 | 21 | opeq2d 3840 |
. . . 4
|
| 23 | 18, 22 | oveq12d 5985 |
. . 3
|
| 24 | ressex 13012 |
. . . . 5
| |
| 25 | 16, 24 | eqeltrid 2294 |
. . . 4
|
| 26 | eqid 2207 |
. . . . 5
| |
| 27 | eqid 2207 |
. . . . 5
| |
| 28 | 26, 27 | mgpvalg 13800 |
. . . 4
|
| 29 | 25, 28 | syl 14 |
. . 3
|
| 30 | plusgslid 13059 |
. . . . . 6
| |
| 31 | 30 | simpri 113 |
. . . . 5
|
| 32 | 31 | a1i 9 |
. . . 4
|
| 33 | basendxnn 13003 |
. . . . 5
| |
| 34 | 33 | a1i 9 |
. . . 4
|
| 35 | simpl 109 |
. . . 4
| |
| 36 | basendxnplusgndx 13072 |
. . . . . 6
| |
| 37 | 36 | necomi 2463 |
. . . . 5
|
| 38 | 37 | a1i 9 |
. . . 4
|
| 39 | mulrslid 13079 |
. . . . . 6
| |
| 40 | 39 | slotex 12974 |
. . . . 5
|
| 41 | 40 | adantr 276 |
. . . 4
|
| 42 | inex1g 4196 |
. . . . 5
| |
| 43 | 42 | adantl 277 |
. . . 4
|
| 44 | 32, 34, 35, 38, 41, 43 | setscomd 12988 |
. . 3
|
| 45 | 23, 29, 44 | 3eqtr4d 2250 |
. 2
|
| 46 | 5, 15, 45 | 3eqtr4d 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-iress 12955 df-plusg 13037 df-mulr 13038 df-mgp 13798 |
| This theorem is referenced by: rdivmuldivd 14021 subrgcrng 14102 subrgsubm 14111 resrhm 14125 resrhm2b 14126 zringmpg 14483 |
| Copyright terms: Public domain | W3C validator |