ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgpress Unicode version

Theorem mgpress 13146
Description: Subgroup commutes with the multiplicative group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.)
Hypotheses
Ref Expression
mgpress.1  |-  S  =  ( Rs  A )
mgpress.2  |-  M  =  (mulGrp `  R )
Assertion
Ref Expression
mgpress  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  (mulGrp `  S ) )

Proof of Theorem mgpress
StepHypRef Expression
1 mgpress.2 . . . . 5  |-  M  =  (mulGrp `  R )
2 eqid 2177 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
31, 2mgpvalg 13138 . . . 4  |-  ( R  e.  V  ->  M  =  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
)
43adantr 276 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  M  =  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
)
54oveq1d 5892 . 2  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. )  =  (
( R sSet  <. ( +g  ` 
ndx ) ,  ( .r `  R )
>. ) sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) ) >.
) )
61mgpex 13140 . . . 4  |-  ( R  e.  V  ->  M  e.  _V )
7 ressvalsets 12526 . . . 4  |-  ( ( M  e.  _V  /\  A  e.  W )  ->  ( Ms  A )  =  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  M
) ) >. )
)
86, 7sylan 283 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  M
) ) >. )
)
9 eqid 2177 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
101, 9mgpbasg 13141 . . . . . . 7  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  M
) )
1110adantr 276 . . . . . 6  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Base `  R
)  =  ( Base `  M ) )
1211ineq2d 3338 . . . . 5  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( A  i^i  ( Base `  R ) )  =  ( A  i^i  ( Base `  M )
) )
1312opeq2d 3787 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  -> 
<. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >.  =  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  M ) )
>. )
1413oveq2d 5893 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. )  =  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  M
) ) >. )
)
158, 14eqtr4d 2213 . 2  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  ( M sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. )
)
16 mgpress.1 . . . . 5  |-  S  =  ( Rs  A )
17 ressvalsets 12526 . . . . 5  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Rs  A )  =  ( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. )
)
1816, 17eqtrid 2222 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  S  =  ( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R
) ) >. )
)
1916, 2ressmulrg 12605 . . . . . . 7  |-  ( ( A  e.  W  /\  R  e.  V )  ->  ( .r `  R
)  =  ( .r
`  S ) )
2019ancoms 268 . . . . . 6  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( .r `  R
)  =  ( .r
`  S ) )
2120eqcomd 2183 . . . . 5  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( .r `  S
)  =  ( .r
`  R ) )
2221opeq2d 3787 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  -> 
<. ( +g  `  ndx ) ,  ( .r `  S ) >.  =  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
2318, 22oveq12d 5895 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( S sSet  <. ( +g  `  ndx ) ,  ( .r `  S
) >. )  =  ( ( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. ) sSet  <. ( +g  ` 
ndx ) ,  ( .r `  R )
>. ) )
24 ressex 12527 . . . . 5  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Rs  A )  e.  _V )
2516, 24eqeltrid 2264 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  S  e.  _V )
26 eqid 2177 . . . . 5  |-  (mulGrp `  S )  =  (mulGrp `  S )
27 eqid 2177 . . . . 5  |-  ( .r
`  S )  =  ( .r `  S
)
2826, 27mgpvalg 13138 . . . 4  |-  ( S  e.  _V  ->  (mulGrp `  S )  =  ( S sSet  <. ( +g  `  ndx ) ,  ( .r `  S ) >. )
)
2925, 28syl 14 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  (mulGrp `  S )  =  ( S sSet  <. ( +g  `  ndx ) ,  ( .r `  S ) >. )
)
30 plusgslid 12573 . . . . . 6  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
3130simpri 113 . . . . 5  |-  ( +g  ` 
ndx )  e.  NN
3231a1i 9 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( +g  `  ndx )  e.  NN )
33 basendxnn 12520 . . . . 5  |-  ( Base `  ndx )  e.  NN
3433a1i 9 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Base `  ndx )  e.  NN )
35 simpl 109 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  R  e.  V )
36 basendxnplusgndx 12585 . . . . . 6  |-  ( Base `  ndx )  =/=  ( +g  `  ndx )
3736necomi 2432 . . . . 5  |-  ( +g  ` 
ndx )  =/=  ( Base `  ndx )
3837a1i 9 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( +g  `  ndx )  =/=  ( Base `  ndx ) )
39 mulrslid 12592 . . . . . 6  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
4039slotex 12491 . . . . 5  |-  ( R  e.  V  ->  ( .r `  R )  e. 
_V )
4140adantr 276 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( .r `  R
)  e.  _V )
42 inex1g 4141 . . . . 5  |-  ( A  e.  W  ->  ( A  i^i  ( Base `  R
) )  e.  _V )
4342adantl 277 . . . 4  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( A  i^i  ( Base `  R ) )  e.  _V )
4432, 34, 35, 38, 41, 43setscomd 12505 . . 3  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. ) sSet  <.
( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. )  =  (
( R sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) ) >.
) sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
)
4523, 29, 443eqtr4d 2220 . 2  |-  ( ( R  e.  V  /\  A  e.  W )  ->  (mulGrp `  S )  =  ( ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. ) sSet  <.
( Base `  ndx ) ,  ( A  i^i  ( Base `  R ) )
>. ) )
465, 15, 453eqtr4d 2220 1  |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  (mulGrp `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148    =/= wne 2347   _Vcvv 2739    i^i cin 3130   <.cop 3597   ` cfv 5218  (class class class)co 5877   NNcn 8921   ndxcnx 12461   sSet csts 12462  Slot cslot 12463   Basecbs 12464   ↾s cress 12465   +g cplusg 12538   .rcmulr 12539  mulGrpcmgp 13135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472  df-plusg 12551  df-mulr 12552  df-mgp 13136
This theorem is referenced by:  rdivmuldivd  13318  subrgcrng  13351  subrgsubm  13360  zringmpg  13535
  Copyright terms: Public domain W3C validator