ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp01disj Unicode version

Theorem xp01disj 6477
Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by NM, 2-Jun-2007.)
Assertion
Ref Expression
xp01disj  |-  ( ( A  X.  { (/) } )  i^i  ( C  X.  { 1o }
) )  =  (/)

Proof of Theorem xp01disj
StepHypRef Expression
1 1n0 6476 . . 3  |-  1o  =/=  (/)
21necomi 2449 . 2  |-  (/)  =/=  1o
3 xpsndisj 5084 . 2  |-  ( (/)  =/=  1o  ->  ( ( A  X.  { (/) } )  i^i  ( C  X.  { 1o } ) )  =  (/) )
42, 3ax-mp 5 1  |-  ( ( A  X.  { (/) } )  i^i  ( C  X.  { 1o }
) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    =/= wne 2364    i^i cin 3152   (/)c0 3446   {csn 3618    X. cxp 4653   1oc1o 6453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-suc 4400  df-xp 4661  df-rel 4662  df-cnv 4663  df-1o 6460
This theorem is referenced by:  endisj  6869
  Copyright terms: Public domain W3C validator