ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp01disj Unicode version

Theorem xp01disj 6491
Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by NM, 2-Jun-2007.)
Assertion
Ref Expression
xp01disj  |-  ( ( A  X.  { (/) } )  i^i  ( C  X.  { 1o }
) )  =  (/)

Proof of Theorem xp01disj
StepHypRef Expression
1 1n0 6490 . . 3  |-  1o  =/=  (/)
21necomi 2452 . 2  |-  (/)  =/=  1o
3 xpsndisj 5096 . 2  |-  ( (/)  =/=  1o  ->  ( ( A  X.  { (/) } )  i^i  ( C  X.  { 1o } ) )  =  (/) )
42, 3ax-mp 5 1  |-  ( ( A  X.  { (/) } )  i^i  ( C  X.  { 1o }
) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    =/= wne 2367    i^i cin 3156   (/)c0 3450   {csn 3622    X. cxp 4661   1oc1o 6467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-1o 6474
This theorem is referenced by:  endisj  6883
  Copyright terms: Public domain W3C validator