| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressmulrg | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| ressmulr.1 |
|
| ressmulr.2 |
|
| Ref | Expression |
|---|---|
| ressmulrg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmulr.1 |
. 2
| |
| 2 | ressmulr.2 |
. 2
| |
| 3 | mulrslid 13165 |
. 2
| |
| 4 | basendxnmulrndx 13167 |
. . 3
| |
| 5 | 4 | necomi 2485 |
. 2
|
| 6 | simpr 110 |
. 2
| |
| 7 | simpl 109 |
. 2
| |
| 8 | 1, 2, 3, 5, 6, 7 | resseqnbasd 13106 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-2 9169 df-3 9170 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-iress 13040 df-mulr 13124 |
| This theorem is referenced by: mgpress 13894 rngressid 13917 ringressid 14026 rdivmuldivd 14108 subrngmcl 14173 issubrng2 14174 subrngpropd 14180 subrg1 14195 subrgmcl 14197 subrgdvds 14199 subrguss 14200 subrginv 14201 subrgdv 14202 subrgunit 14203 subrgugrp 14204 issubrg2 14205 subrgpropd 14217 sralmod 14414 rnglidlmmgm 14460 rnglidlmsgrp 14461 rnglidlrng 14462 zringmulr 14563 |
| Copyright terms: Public domain | W3C validator |