ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfnepnf Unicode version

Theorem mnfnepnf 7975
Description: Minus and plus infinity are different (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
mnfnepnf  |- -oo  =/= +oo

Proof of Theorem mnfnepnf
StepHypRef Expression
1 pnfnemnf 7974 . 2  |- +oo  =/= -oo
21necomi 2425 1  |- -oo  =/= +oo
Colors of variables: wff set class
Syntax hints:    =/= wne 2340   +oocpnf 7951   -oocmnf 7952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-un 4418  ax-cnex 7865
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-rex 2454  df-rab 2457  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-pnf 7956  df-mnf 7957  df-xr 7958
This theorem is referenced by:  xrnepnf  9735  xrlttri3  9754  nltpnft  9771  xnegmnf  9786  xrpnfdc  9799  xaddmnf1  9805  xaddmnf2  9806  mnfaddpnf  9808  xaddnepnf  9815  xsubge0  9838  xposdif  9839  xleaddadd  9844
  Copyright terms: Public domain W3C validator