Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mnfnepnf | Unicode version |
Description: Minus and plus infinity are different (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
mnfnepnf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnemnf 7974 | . 2 | |
2 | 1 | necomi 2425 | 1 |
Colors of variables: wff set class |
Syntax hints: wne 2340 cpnf 7951 cmnf 7952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-un 4418 ax-cnex 7865 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-pnf 7956 df-mnf 7957 df-xr 7958 |
This theorem is referenced by: xrnepnf 9735 xrlttri3 9754 nltpnft 9771 xnegmnf 9786 xrpnfdc 9799 xaddmnf1 9805 xaddmnf2 9806 mnfaddpnf 9808 xaddnepnf 9815 xsubge0 9838 xposdif 9839 xleaddadd 9844 |
Copyright terms: Public domain | W3C validator |