ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfnepnf Unicode version

Theorem mnfnepnf 7640
Description: Minus and plus infinity are different (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
mnfnepnf  |- -oo  =/= +oo

Proof of Theorem mnfnepnf
StepHypRef Expression
1 pnfnemnf 7639 . 2  |- +oo  =/= -oo
21necomi 2347 1  |- -oo  =/= +oo
Colors of variables: wff set class
Syntax hints:    =/= wne 2262   +oocpnf 7616   -oocmnf 7617
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-un 4284  ax-cnex 7533
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-rex 2376  df-rab 2379  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-uni 3676  df-pnf 7621  df-mnf 7622  df-xr 7623
This theorem is referenced by:  xrnepnf  9348  xrlttri3  9366  nltpnft  9380  xnegmnf  9395  xrpnfdc  9408  xaddmnf1  9414  xaddmnf2  9415  mnfaddpnf  9417  xaddnepnf  9424  xsubge0  9447  xposdif  9448  xleaddadd  9453
  Copyright terms: Public domain W3C validator