ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfnepnf Unicode version

Theorem mnfnepnf 8202
Description: Minus and plus infinity are different (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
mnfnepnf  |- -oo  =/= +oo

Proof of Theorem mnfnepnf
StepHypRef Expression
1 pnfnemnf 8201 . 2  |- +oo  =/= -oo
21necomi 2485 1  |- -oo  =/= +oo
Colors of variables: wff set class
Syntax hints:    =/= wne 2400   +oocpnf 8178   -oocmnf 8179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-un 4524  ax-cnex 8090
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-pnf 8183  df-mnf 8184  df-xr 8185
This theorem is referenced by:  xrnepnf  9974  xrlttri3  9993  nltpnft  10010  xnegmnf  10025  xrpnfdc  10038  xaddmnf1  10044  xaddmnf2  10045  mnfaddpnf  10047  xaddnepnf  10054  xsubge0  10077  xposdif  10078  xleaddadd  10083
  Copyright terms: Public domain W3C validator