| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressplusgd | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| ressplusgd.1 |
|
| ressplusgd.2 |
|
| ressplusgd.a |
|
| ressplusgd.g |
|
| Ref | Expression |
|---|---|
| ressplusgd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 |
. . 3
| |
| 2 | eqid 2196 |
. . 3
| |
| 3 | plusgslid 12815 |
. . 3
| |
| 4 | basendxnplusgndx 12827 |
. . . 4
| |
| 5 | 4 | necomi 2452 |
. . 3
|
| 6 | ressplusgd.g |
. . 3
| |
| 7 | ressplusgd.a |
. . 3
| |
| 8 | 1, 2, 3, 5, 6, 7 | resseqnbasd 12776 |
. 2
|
| 9 | ressplusgd.2 |
. 2
| |
| 10 | ressplusgd.1 |
. . 3
| |
| 11 | 10 | fveq2d 5565 |
. 2
|
| 12 | 8, 9, 11 | 3eqtr4d 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-iress 12711 df-plusg 12793 |
| This theorem is referenced by: gsumress 13097 issubmnd 13144 ress0g 13145 resmhm 13189 resmhm2 13190 resmhm2b 13191 grpressid 13263 submmulg 13372 subg0 13386 subginv 13387 subgcl 13390 subgsub 13392 subgmulg 13394 issubg2m 13395 nmznsg 13419 resghm 13466 subgabl 13538 subcmnd 13539 ablressid 13541 rngressid 13586 ringidss 13661 ringressid 13695 opprsubgg 13716 unitgrp 13748 unitlinv 13758 unitrinv 13759 invrpropdg 13781 rhmunitinv 13810 issubrng2 13842 subrngpropd 13848 subrgugrp 13872 issubrg2 13873 subrgpropd 13885 islss3 14011 sralmod 14082 rnglidlrng 14130 zringplusg 14229 expghmap 14239 |
| Copyright terms: Public domain | W3C validator |