ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressplusgd Unicode version

Theorem ressplusgd 13162
Description:  +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypotheses
Ref Expression
ressplusgd.1  |-  ( ph  ->  H  =  ( Gs  A ) )
ressplusgd.2  |-  ( ph  ->  .+  =  ( +g  `  G ) )
ressplusgd.a  |-  ( ph  ->  A  e.  V )
ressplusgd.g  |-  ( ph  ->  G  e.  W )
Assertion
Ref Expression
ressplusgd  |-  ( ph  ->  .+  =  ( +g  `  H ) )

Proof of Theorem ressplusgd
StepHypRef Expression
1 eqid 2229 . . 3  |-  ( Gs  A )  =  ( Gs  A )
2 eqid 2229 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
3 plusgslid 13145 . . 3  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
4 basendxnplusgndx 13158 . . . 4  |-  ( Base `  ndx )  =/=  ( +g  `  ndx )
54necomi 2485 . . 3  |-  ( +g  ` 
ndx )  =/=  ( Base `  ndx )
6 ressplusgd.g . . 3  |-  ( ph  ->  G  e.  W )
7 ressplusgd.a . . 3  |-  ( ph  ->  A  e.  V )
81, 2, 3, 5, 6, 7resseqnbasd 13106 . 2  |-  ( ph  ->  ( +g  `  G
)  =  ( +g  `  ( Gs  A ) ) )
9 ressplusgd.2 . 2  |-  ( ph  ->  .+  =  ( +g  `  G ) )
10 ressplusgd.1 . . 3  |-  ( ph  ->  H  =  ( Gs  A ) )
1110fveq2d 5631 . 2  |-  ( ph  ->  ( +g  `  H
)  =  ( +g  `  ( Gs  A ) ) )
128, 9, 113eqtr4d 2272 1  |-  ( ph  ->  .+  =  ( +g  `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6001   ndxcnx 13029   Basecbs 13032   ↾s cress 13033   +g cplusg 13110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123
This theorem is referenced by:  gsumress  13428  issubmnd  13475  ress0g  13476  resmhm  13520  resmhm2  13521  resmhm2b  13522  grpressid  13594  submmulg  13703  subg0  13717  subginv  13718  subgcl  13721  subgsub  13723  subgmulg  13725  issubg2m  13726  nmznsg  13750  resghm  13797  subgabl  13869  subcmnd  13870  ablressid  13872  rngressid  13917  ringidss  13992  ringressid  14026  opprsubgg  14047  unitgrp  14080  unitlinv  14090  unitrinv  14091  invrpropdg  14113  rhmunitinv  14142  issubrng2  14174  subrngpropd  14180  subrgugrp  14204  issubrg2  14205  subrgpropd  14217  islss3  14343  sralmod  14414  rnglidlrng  14462  zringplusg  14561  expghmap  14571  mplplusgg  14667
  Copyright terms: Public domain W3C validator