| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 1ne0 | Unicode version | ||
| Description:  | 
| Ref | Expression | 
|---|---|
| 1ne0 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0ne1 9057 | 
. 2
 | |
| 2 | 1 | necomi 2452 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 ax-0lt1 7985 ax-rnegex 7988 ax-pre-ltirr 7991 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-pnf 8063 df-mnf 8064 df-ltxr 8066 | 
| This theorem is referenced by: neg1ne0 9097 efne0 11843 mod2eq1n2dvds 12044 m1exp1 12066 gcd1 12154 rpdvds 12267 m1dvdsndvds 12417 pcpre1 12461 pc1 12474 pcrec 12477 pcid 12493 zringnzr 14158 lgsne0 15279 1lgs 15284 gausslemma2dlem0i 15298 lgsquad2lem2 15323 2lgs 15345 2sqlem7 15362 2sqlem8a 15363 2sqlem8 15364 trirec0xor 15689 dceqnconst 15704 dcapnconst 15705 | 
| Copyright terms: Public domain | W3C validator |