Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1ne0 | Unicode version |
Description: . See aso 1ap0 8509. (Contributed by Jim Kingdon, 9-Mar-2020.) |
Ref | Expression |
---|---|
1ne0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ne1 8945 | . 2 | |
2 | 1 | necomi 2425 | 1 |
Colors of variables: wff set class |
Syntax hints: wne 2340 cc0 7774 c1 7775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 ax-0lt1 7880 ax-rnegex 7883 ax-pre-ltirr 7886 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-pnf 7956 df-mnf 7957 df-ltxr 7959 |
This theorem is referenced by: neg1ne0 8985 efne0 11641 mod2eq1n2dvds 11838 m1exp1 11860 gcd1 11942 rpdvds 12053 m1dvdsndvds 12202 pcpre1 12246 pc1 12259 pcrec 12262 pcid 12277 lgsne0 13733 1lgs 13738 2sqlem7 13751 2sqlem8a 13752 2sqlem8 13753 trirec0xor 14077 dceqnconst 14091 dcapnconst 14092 |
Copyright terms: Public domain | W3C validator |