ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negeqi Unicode version

Theorem negeqi 7920
Description: Equality inference for negatives. (Contributed by NM, 14-Feb-1995.)
Hypothesis
Ref Expression
negeqi.1  |-  A  =  B
Assertion
Ref Expression
negeqi  |-  -u A  =  -u B

Proof of Theorem negeqi
StepHypRef Expression
1 negeqi.1 . 2  |-  A  =  B
2 negeq 7919 . 2  |-  ( A  =  B  ->  -u A  =  -u B )
31, 2ax-mp 5 1  |-  -u A  =  -u B
Colors of variables: wff set class
Syntax hints:    = wceq 1314   -ucneg 7898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-rex 2397  df-v 2660  df-un 3043  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-iota 5056  df-fv 5099  df-ov 5743  df-neg 7900
This theorem is referenced by:  negsubdii  8011  m1expcl2  10266  resqrexlemover  10733  resqrexlemcalc1  10737  absi  10782  geo2sum2  11235  cos2bnd  11377
  Copyright terms: Public domain W3C validator