![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negeqi | GIF version |
Description: Equality inference for negatives. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
negeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
negeqi | ⊢ -𝐴 = -𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | negeq 7736 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ -𝐴 = -𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1290 -cneg 7715 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-rex 2366 df-v 2622 df-un 3004 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-iota 4993 df-fv 5036 df-ov 5669 df-neg 7717 |
This theorem is referenced by: negsubdii 7828 m1expcl2 10038 resqrexlemover 10504 resqrexlemcalc1 10508 absi 10553 geo2sum2 10970 cos2bnd 11112 |
Copyright terms: Public domain | W3C validator |