ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1expcl2 Unicode version

Theorem m1expcl2 10706
Description: Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
m1expcl2  |-  ( N  e.  ZZ  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )

Proof of Theorem m1expcl2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neg1cn 9141 . . 3  |-  -u 1  e.  CC
2 prid1g 3737 . . 3  |-  ( -u
1  e.  CC  ->  -u
1  e.  { -u
1 ,  1 } )
31, 2ax-mp 5 . 2  |-  -u 1  e.  { -u 1 ,  1 }
4 neg1ap0 9145 . 2  |-  -u 1 #  0
5 ax-1cn 8018 . . . 4  |-  1  e.  CC
6 prssi 3791 . . . 4  |-  ( (
-u 1  e.  CC  /\  1  e.  CC )  ->  { -u 1 ,  1 }  C_  CC )
71, 5, 6mp2an 426 . . 3  |-  { -u
1 ,  1 } 
C_  CC
8 elpri 3656 . . . . 5  |-  ( x  e.  { -u 1 ,  1 }  ->  ( x  =  -u 1  \/  x  =  1
) )
97sseli 3189 . . . . . . . . 9  |-  ( y  e.  { -u 1 ,  1 }  ->  y  e.  CC )
109mulm1d 8482 . . . . . . . 8  |-  ( y  e.  { -u 1 ,  1 }  ->  (
-u 1  x.  y
)  =  -u y
)
11 elpri 3656 . . . . . . . . 9  |-  ( y  e.  { -u 1 ,  1 }  ->  ( y  =  -u 1  \/  y  =  1
) )
12 negeq 8265 . . . . . . . . . . 11  |-  ( y  =  -u 1  ->  -u y  =  -u -u 1 )
13 negneg1e1 9146 . . . . . . . . . . . 12  |-  -u -u 1  =  1
14 1ex 8067 . . . . . . . . . . . . 13  |-  1  e.  _V
1514prid2 3740 . . . . . . . . . . . 12  |-  1  e.  { -u 1 ,  1 }
1613, 15eqeltri 2278 . . . . . . . . . . 11  |-  -u -u 1  e.  { -u 1 ,  1 }
1712, 16eqeltrdi 2296 . . . . . . . . . 10  |-  ( y  =  -u 1  ->  -u y  e.  { -u 1 ,  1 } )
18 negeq 8265 . . . . . . . . . . 11  |-  ( y  =  1  ->  -u y  =  -u 1 )
1918, 3eqeltrdi 2296 . . . . . . . . . 10  |-  ( y  =  1  ->  -u y  e.  { -u 1 ,  1 } )
2017, 19jaoi 718 . . . . . . . . 9  |-  ( ( y  =  -u 1  \/  y  =  1
)  ->  -u y  e. 
{ -u 1 ,  1 } )
2111, 20syl 14 . . . . . . . 8  |-  ( y  e.  { -u 1 ,  1 }  ->  -u y  e.  { -u 1 ,  1 } )
2210, 21eqeltrd 2282 . . . . . . 7  |-  ( y  e.  { -u 1 ,  1 }  ->  (
-u 1  x.  y
)  e.  { -u
1 ,  1 } )
23 oveq1 5951 . . . . . . . 8  |-  ( x  =  -u 1  ->  (
x  x.  y )  =  ( -u 1  x.  y ) )
2423eleq1d 2274 . . . . . . 7  |-  ( x  =  -u 1  ->  (
( x  x.  y
)  e.  { -u
1 ,  1 }  <-> 
( -u 1  x.  y
)  e.  { -u
1 ,  1 } ) )
2522, 24imbitrrid 156 . . . . . 6  |-  ( x  =  -u 1  ->  (
y  e.  { -u
1 ,  1 }  ->  ( x  x.  y )  e.  { -u 1 ,  1 } ) )
269mulid2d 8091 . . . . . . . 8  |-  ( y  e.  { -u 1 ,  1 }  ->  ( 1  x.  y )  =  y )
27 id 19 . . . . . . . 8  |-  ( y  e.  { -u 1 ,  1 }  ->  y  e.  { -u 1 ,  1 } )
2826, 27eqeltrd 2282 . . . . . . 7  |-  ( y  e.  { -u 1 ,  1 }  ->  ( 1  x.  y )  e.  { -u 1 ,  1 } )
29 oveq1 5951 . . . . . . . 8  |-  ( x  =  1  ->  (
x  x.  y )  =  ( 1  x.  y ) )
3029eleq1d 2274 . . . . . . 7  |-  ( x  =  1  ->  (
( x  x.  y
)  e.  { -u
1 ,  1 }  <-> 
( 1  x.  y
)  e.  { -u
1 ,  1 } ) )
3128, 30imbitrrid 156 . . . . . 6  |-  ( x  =  1  ->  (
y  e.  { -u
1 ,  1 }  ->  ( x  x.  y )  e.  { -u 1 ,  1 } ) )
3225, 31jaoi 718 . . . . 5  |-  ( ( x  =  -u 1  \/  x  =  1
)  ->  ( y  e.  { -u 1 ,  1 }  ->  (
x  x.  y )  e.  { -u 1 ,  1 } ) )
338, 32syl 14 . . . 4  |-  ( x  e.  { -u 1 ,  1 }  ->  ( y  e.  { -u
1 ,  1 }  ->  ( x  x.  y )  e.  { -u 1 ,  1 } ) )
3433imp 124 . . 3  |-  ( ( x  e.  { -u
1 ,  1 }  /\  y  e.  { -u 1 ,  1 } )  ->  ( x  x.  y )  e.  { -u 1 ,  1 } )
35 oveq2 5952 . . . . . . 7  |-  ( x  =  -u 1  ->  (
1  /  x )  =  ( 1  /  -u 1 ) )
36 1ap0 8663 . . . . . . . . . 10  |-  1 #  0
37 divneg2ap 8809 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  1  e.  CC  /\  1 #  0 )  ->  -u (
1  /  1 )  =  ( 1  /  -u 1 ) )
385, 5, 36, 37mp3an 1350 . . . . . . . . 9  |-  -u (
1  /  1 )  =  ( 1  /  -u 1 )
39 1div1e1 8777 . . . . . . . . . 10  |-  ( 1  /  1 )  =  1
4039negeqi 8266 . . . . . . . . 9  |-  -u (
1  /  1 )  =  -u 1
4138, 40eqtr3i 2228 . . . . . . . 8  |-  ( 1  /  -u 1 )  = 
-u 1
4241, 3eqeltri 2278 . . . . . . 7  |-  ( 1  /  -u 1 )  e. 
{ -u 1 ,  1 }
4335, 42eqeltrdi 2296 . . . . . 6  |-  ( x  =  -u 1  ->  (
1  /  x )  e.  { -u 1 ,  1 } )
44 oveq2 5952 . . . . . . 7  |-  ( x  =  1  ->  (
1  /  x )  =  ( 1  / 
1 ) )
4539, 15eqeltri 2278 . . . . . . 7  |-  ( 1  /  1 )  e. 
{ -u 1 ,  1 }
4644, 45eqeltrdi 2296 . . . . . 6  |-  ( x  =  1  ->  (
1  /  x )  e.  { -u 1 ,  1 } )
4743, 46jaoi 718 . . . . 5  |-  ( ( x  =  -u 1  \/  x  =  1
)  ->  ( 1  /  x )  e. 
{ -u 1 ,  1 } )
488, 47syl 14 . . . 4  |-  ( x  e.  { -u 1 ,  1 }  ->  ( 1  /  x )  e.  { -u 1 ,  1 } )
4948adantr 276 . . 3  |-  ( ( x  e.  { -u
1 ,  1 }  /\  x #  0 )  ->  ( 1  /  x )  e.  { -u 1 ,  1 } )
507, 34, 15, 49expcl2lemap 10696 . 2  |-  ( (
-u 1  e.  { -u 1 ,  1 }  /\  -u 1 #  0  /\  N  e.  ZZ )  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )
513, 4, 50mp3an12 1340 1  |-  ( N  e.  ZZ  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 710    = wceq 1373    e. wcel 2176    C_ wss 3166   {cpr 3634   class class class wbr 4044  (class class class)co 5944   CCcc 7923   0cc0 7925   1c1 7926    x. cmul 7930   -ucneg 8244   # cap 8654    / cdiv 8745   ZZcz 9372   ^cexp 10683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-seqfrec 10593  df-exp 10684
This theorem is referenced by:  m1expcl  10707  m1expeven  10731  gausslemma2dlem0i  15534  lgseisenlem2  15548
  Copyright terms: Public domain W3C validator