ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1expcl2 Unicode version

Theorem m1expcl2 10477
Description: Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
m1expcl2  |-  ( N  e.  ZZ  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )

Proof of Theorem m1expcl2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neg1cn 8962 . . 3  |-  -u 1  e.  CC
2 prid1g 3680 . . 3  |-  ( -u
1  e.  CC  ->  -u
1  e.  { -u
1 ,  1 } )
31, 2ax-mp 5 . 2  |-  -u 1  e.  { -u 1 ,  1 }
4 neg1ap0 8966 . 2  |-  -u 1 #  0
5 ax-1cn 7846 . . . 4  |-  1  e.  CC
6 prssi 3731 . . . 4  |-  ( (
-u 1  e.  CC  /\  1  e.  CC )  ->  { -u 1 ,  1 }  C_  CC )
71, 5, 6mp2an 423 . . 3  |-  { -u
1 ,  1 } 
C_  CC
8 elpri 3599 . . . . 5  |-  ( x  e.  { -u 1 ,  1 }  ->  ( x  =  -u 1  \/  x  =  1
) )
97sseli 3138 . . . . . . . . 9  |-  ( y  e.  { -u 1 ,  1 }  ->  y  e.  CC )
109mulm1d 8308 . . . . . . . 8  |-  ( y  e.  { -u 1 ,  1 }  ->  (
-u 1  x.  y
)  =  -u y
)
11 elpri 3599 . . . . . . . . 9  |-  ( y  e.  { -u 1 ,  1 }  ->  ( y  =  -u 1  \/  y  =  1
) )
12 negeq 8091 . . . . . . . . . . 11  |-  ( y  =  -u 1  ->  -u y  =  -u -u 1 )
13 negneg1e1 8967 . . . . . . . . . . . 12  |-  -u -u 1  =  1
14 1ex 7894 . . . . . . . . . . . . 13  |-  1  e.  _V
1514prid2 3683 . . . . . . . . . . . 12  |-  1  e.  { -u 1 ,  1 }
1613, 15eqeltri 2239 . . . . . . . . . . 11  |-  -u -u 1  e.  { -u 1 ,  1 }
1712, 16eqeltrdi 2257 . . . . . . . . . 10  |-  ( y  =  -u 1  ->  -u y  e.  { -u 1 ,  1 } )
18 negeq 8091 . . . . . . . . . . 11  |-  ( y  =  1  ->  -u y  =  -u 1 )
1918, 3eqeltrdi 2257 . . . . . . . . . 10  |-  ( y  =  1  ->  -u y  e.  { -u 1 ,  1 } )
2017, 19jaoi 706 . . . . . . . . 9  |-  ( ( y  =  -u 1  \/  y  =  1
)  ->  -u y  e. 
{ -u 1 ,  1 } )
2111, 20syl 14 . . . . . . . 8  |-  ( y  e.  { -u 1 ,  1 }  ->  -u y  e.  { -u 1 ,  1 } )
2210, 21eqeltrd 2243 . . . . . . 7  |-  ( y  e.  { -u 1 ,  1 }  ->  (
-u 1  x.  y
)  e.  { -u
1 ,  1 } )
23 oveq1 5849 . . . . . . . 8  |-  ( x  =  -u 1  ->  (
x  x.  y )  =  ( -u 1  x.  y ) )
2423eleq1d 2235 . . . . . . 7  |-  ( x  =  -u 1  ->  (
( x  x.  y
)  e.  { -u
1 ,  1 }  <-> 
( -u 1  x.  y
)  e.  { -u
1 ,  1 } ) )
2522, 24syl5ibr 155 . . . . . 6  |-  ( x  =  -u 1  ->  (
y  e.  { -u
1 ,  1 }  ->  ( x  x.  y )  e.  { -u 1 ,  1 } ) )
269mulid2d 7917 . . . . . . . 8  |-  ( y  e.  { -u 1 ,  1 }  ->  ( 1  x.  y )  =  y )
27 id 19 . . . . . . . 8  |-  ( y  e.  { -u 1 ,  1 }  ->  y  e.  { -u 1 ,  1 } )
2826, 27eqeltrd 2243 . . . . . . 7  |-  ( y  e.  { -u 1 ,  1 }  ->  ( 1  x.  y )  e.  { -u 1 ,  1 } )
29 oveq1 5849 . . . . . . . 8  |-  ( x  =  1  ->  (
x  x.  y )  =  ( 1  x.  y ) )
3029eleq1d 2235 . . . . . . 7  |-  ( x  =  1  ->  (
( x  x.  y
)  e.  { -u
1 ,  1 }  <-> 
( 1  x.  y
)  e.  { -u
1 ,  1 } ) )
3128, 30syl5ibr 155 . . . . . 6  |-  ( x  =  1  ->  (
y  e.  { -u
1 ,  1 }  ->  ( x  x.  y )  e.  { -u 1 ,  1 } ) )
3225, 31jaoi 706 . . . . 5  |-  ( ( x  =  -u 1  \/  x  =  1
)  ->  ( y  e.  { -u 1 ,  1 }  ->  (
x  x.  y )  e.  { -u 1 ,  1 } ) )
338, 32syl 14 . . . 4  |-  ( x  e.  { -u 1 ,  1 }  ->  ( y  e.  { -u
1 ,  1 }  ->  ( x  x.  y )  e.  { -u 1 ,  1 } ) )
3433imp 123 . . 3  |-  ( ( x  e.  { -u
1 ,  1 }  /\  y  e.  { -u 1 ,  1 } )  ->  ( x  x.  y )  e.  { -u 1 ,  1 } )
35 oveq2 5850 . . . . . . 7  |-  ( x  =  -u 1  ->  (
1  /  x )  =  ( 1  /  -u 1 ) )
36 1ap0 8488 . . . . . . . . . 10  |-  1 #  0
37 divneg2ap 8632 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  1  e.  CC  /\  1 #  0 )  ->  -u (
1  /  1 )  =  ( 1  /  -u 1 ) )
385, 5, 36, 37mp3an 1327 . . . . . . . . 9  |-  -u (
1  /  1 )  =  ( 1  /  -u 1 )
39 1div1e1 8600 . . . . . . . . . 10  |-  ( 1  /  1 )  =  1
4039negeqi 8092 . . . . . . . . 9  |-  -u (
1  /  1 )  =  -u 1
4138, 40eqtr3i 2188 . . . . . . . 8  |-  ( 1  /  -u 1 )  = 
-u 1
4241, 3eqeltri 2239 . . . . . . 7  |-  ( 1  /  -u 1 )  e. 
{ -u 1 ,  1 }
4335, 42eqeltrdi 2257 . . . . . 6  |-  ( x  =  -u 1  ->  (
1  /  x )  e.  { -u 1 ,  1 } )
44 oveq2 5850 . . . . . . 7  |-  ( x  =  1  ->  (
1  /  x )  =  ( 1  / 
1 ) )
4539, 15eqeltri 2239 . . . . . . 7  |-  ( 1  /  1 )  e. 
{ -u 1 ,  1 }
4644, 45eqeltrdi 2257 . . . . . 6  |-  ( x  =  1  ->  (
1  /  x )  e.  { -u 1 ,  1 } )
4743, 46jaoi 706 . . . . 5  |-  ( ( x  =  -u 1  \/  x  =  1
)  ->  ( 1  /  x )  e. 
{ -u 1 ,  1 } )
488, 47syl 14 . . . 4  |-  ( x  e.  { -u 1 ,  1 }  ->  ( 1  /  x )  e.  { -u 1 ,  1 } )
4948adantr 274 . . 3  |-  ( ( x  e.  { -u
1 ,  1 }  /\  x #  0 )  ->  ( 1  /  x )  e.  { -u 1 ,  1 } )
507, 34, 15, 49expcl2lemap 10467 . 2  |-  ( (
-u 1  e.  { -u 1 ,  1 }  /\  -u 1 #  0  /\  N  e.  ZZ )  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )
513, 4, 50mp3an12 1317 1  |-  ( N  e.  ZZ  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698    = wceq 1343    e. wcel 2136    C_ wss 3116   {cpr 3577   class class class wbr 3982  (class class class)co 5842   CCcc 7751   0cc0 7753   1c1 7754    x. cmul 7758   -ucneg 8070   # cap 8479    / cdiv 8568   ZZcz 9191   ^cexp 10454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-seqfrec 10381  df-exp 10455
This theorem is referenced by:  m1expcl  10478  m1expeven  10502
  Copyright terms: Public domain W3C validator