ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1expcl2 Unicode version

Theorem m1expcl2 10783
Description: Closure of exponentiation of negative one. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
m1expcl2  |-  ( N  e.  ZZ  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )

Proof of Theorem m1expcl2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neg1cn 9215 . . 3  |-  -u 1  e.  CC
2 prid1g 3770 . . 3  |-  ( -u
1  e.  CC  ->  -u
1  e.  { -u
1 ,  1 } )
31, 2ax-mp 5 . 2  |-  -u 1  e.  { -u 1 ,  1 }
4 neg1ap0 9219 . 2  |-  -u 1 #  0
5 ax-1cn 8092 . . . 4  |-  1  e.  CC
6 prssi 3826 . . . 4  |-  ( (
-u 1  e.  CC  /\  1  e.  CC )  ->  { -u 1 ,  1 }  C_  CC )
71, 5, 6mp2an 426 . . 3  |-  { -u
1 ,  1 } 
C_  CC
8 elpri 3689 . . . . 5  |-  ( x  e.  { -u 1 ,  1 }  ->  ( x  =  -u 1  \/  x  =  1
) )
97sseli 3220 . . . . . . . . 9  |-  ( y  e.  { -u 1 ,  1 }  ->  y  e.  CC )
109mulm1d 8556 . . . . . . . 8  |-  ( y  e.  { -u 1 ,  1 }  ->  (
-u 1  x.  y
)  =  -u y
)
11 elpri 3689 . . . . . . . . 9  |-  ( y  e.  { -u 1 ,  1 }  ->  ( y  =  -u 1  \/  y  =  1
) )
12 negeq 8339 . . . . . . . . . . 11  |-  ( y  =  -u 1  ->  -u y  =  -u -u 1 )
13 negneg1e1 9220 . . . . . . . . . . . 12  |-  -u -u 1  =  1
14 1ex 8141 . . . . . . . . . . . . 13  |-  1  e.  _V
1514prid2 3773 . . . . . . . . . . . 12  |-  1  e.  { -u 1 ,  1 }
1613, 15eqeltri 2302 . . . . . . . . . . 11  |-  -u -u 1  e.  { -u 1 ,  1 }
1712, 16eqeltrdi 2320 . . . . . . . . . 10  |-  ( y  =  -u 1  ->  -u y  e.  { -u 1 ,  1 } )
18 negeq 8339 . . . . . . . . . . 11  |-  ( y  =  1  ->  -u y  =  -u 1 )
1918, 3eqeltrdi 2320 . . . . . . . . . 10  |-  ( y  =  1  ->  -u y  e.  { -u 1 ,  1 } )
2017, 19jaoi 721 . . . . . . . . 9  |-  ( ( y  =  -u 1  \/  y  =  1
)  ->  -u y  e. 
{ -u 1 ,  1 } )
2111, 20syl 14 . . . . . . . 8  |-  ( y  e.  { -u 1 ,  1 }  ->  -u y  e.  { -u 1 ,  1 } )
2210, 21eqeltrd 2306 . . . . . . 7  |-  ( y  e.  { -u 1 ,  1 }  ->  (
-u 1  x.  y
)  e.  { -u
1 ,  1 } )
23 oveq1 6008 . . . . . . . 8  |-  ( x  =  -u 1  ->  (
x  x.  y )  =  ( -u 1  x.  y ) )
2423eleq1d 2298 . . . . . . 7  |-  ( x  =  -u 1  ->  (
( x  x.  y
)  e.  { -u
1 ,  1 }  <-> 
( -u 1  x.  y
)  e.  { -u
1 ,  1 } ) )
2522, 24imbitrrid 156 . . . . . 6  |-  ( x  =  -u 1  ->  (
y  e.  { -u
1 ,  1 }  ->  ( x  x.  y )  e.  { -u 1 ,  1 } ) )
269mulid2d 8165 . . . . . . . 8  |-  ( y  e.  { -u 1 ,  1 }  ->  ( 1  x.  y )  =  y )
27 id 19 . . . . . . . 8  |-  ( y  e.  { -u 1 ,  1 }  ->  y  e.  { -u 1 ,  1 } )
2826, 27eqeltrd 2306 . . . . . . 7  |-  ( y  e.  { -u 1 ,  1 }  ->  ( 1  x.  y )  e.  { -u 1 ,  1 } )
29 oveq1 6008 . . . . . . . 8  |-  ( x  =  1  ->  (
x  x.  y )  =  ( 1  x.  y ) )
3029eleq1d 2298 . . . . . . 7  |-  ( x  =  1  ->  (
( x  x.  y
)  e.  { -u
1 ,  1 }  <-> 
( 1  x.  y
)  e.  { -u
1 ,  1 } ) )
3128, 30imbitrrid 156 . . . . . 6  |-  ( x  =  1  ->  (
y  e.  { -u
1 ,  1 }  ->  ( x  x.  y )  e.  { -u 1 ,  1 } ) )
3225, 31jaoi 721 . . . . 5  |-  ( ( x  =  -u 1  \/  x  =  1
)  ->  ( y  e.  { -u 1 ,  1 }  ->  (
x  x.  y )  e.  { -u 1 ,  1 } ) )
338, 32syl 14 . . . 4  |-  ( x  e.  { -u 1 ,  1 }  ->  ( y  e.  { -u
1 ,  1 }  ->  ( x  x.  y )  e.  { -u 1 ,  1 } ) )
3433imp 124 . . 3  |-  ( ( x  e.  { -u
1 ,  1 }  /\  y  e.  { -u 1 ,  1 } )  ->  ( x  x.  y )  e.  { -u 1 ,  1 } )
35 oveq2 6009 . . . . . . 7  |-  ( x  =  -u 1  ->  (
1  /  x )  =  ( 1  /  -u 1 ) )
36 1ap0 8737 . . . . . . . . . 10  |-  1 #  0
37 divneg2ap 8883 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  1  e.  CC  /\  1 #  0 )  ->  -u (
1  /  1 )  =  ( 1  /  -u 1 ) )
385, 5, 36, 37mp3an 1371 . . . . . . . . 9  |-  -u (
1  /  1 )  =  ( 1  /  -u 1 )
39 1div1e1 8851 . . . . . . . . . 10  |-  ( 1  /  1 )  =  1
4039negeqi 8340 . . . . . . . . 9  |-  -u (
1  /  1 )  =  -u 1
4138, 40eqtr3i 2252 . . . . . . . 8  |-  ( 1  /  -u 1 )  = 
-u 1
4241, 3eqeltri 2302 . . . . . . 7  |-  ( 1  /  -u 1 )  e. 
{ -u 1 ,  1 }
4335, 42eqeltrdi 2320 . . . . . 6  |-  ( x  =  -u 1  ->  (
1  /  x )  e.  { -u 1 ,  1 } )
44 oveq2 6009 . . . . . . 7  |-  ( x  =  1  ->  (
1  /  x )  =  ( 1  / 
1 ) )
4539, 15eqeltri 2302 . . . . . . 7  |-  ( 1  /  1 )  e. 
{ -u 1 ,  1 }
4644, 45eqeltrdi 2320 . . . . . 6  |-  ( x  =  1  ->  (
1  /  x )  e.  { -u 1 ,  1 } )
4743, 46jaoi 721 . . . . 5  |-  ( ( x  =  -u 1  \/  x  =  1
)  ->  ( 1  /  x )  e. 
{ -u 1 ,  1 } )
488, 47syl 14 . . . 4  |-  ( x  e.  { -u 1 ,  1 }  ->  ( 1  /  x )  e.  { -u 1 ,  1 } )
4948adantr 276 . . 3  |-  ( ( x  e.  { -u
1 ,  1 }  /\  x #  0 )  ->  ( 1  /  x )  e.  { -u 1 ,  1 } )
507, 34, 15, 49expcl2lemap 10773 . 2  |-  ( (
-u 1  e.  { -u 1 ,  1 }  /\  -u 1 #  0  /\  N  e.  ZZ )  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )
513, 4, 50mp3an12 1361 1  |-  ( N  e.  ZZ  ->  ( -u 1 ^ N )  e.  { -u 1 ,  1 } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 713    = wceq 1395    e. wcel 2200    C_ wss 3197   {cpr 3667   class class class wbr 4083  (class class class)co 6001   CCcc 7997   0cc0 7999   1c1 8000    x. cmul 8004   -ucneg 8318   # cap 8728    / cdiv 8819   ZZcz 9446   ^cexp 10760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-seqfrec 10670  df-exp 10761
This theorem is referenced by:  m1expcl  10784  m1expeven  10808  gausslemma2dlem0i  15736  lgseisenlem2  15750
  Copyright terms: Public domain W3C validator