ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negeq Unicode version

Theorem negeq 8267
Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.)
Assertion
Ref Expression
negeq  |-  ( A  =  B  ->  -u A  =  -u B )

Proof of Theorem negeq
StepHypRef Expression
1 oveq2 5954 . 2  |-  ( A  =  B  ->  (
0  -  A )  =  ( 0  -  B ) )
2 df-neg 8248 . 2  |-  -u A  =  ( 0  -  A )
3 df-neg 8248 . 2  |-  -u B  =  ( 0  -  B )
41, 2, 33eqtr4g 2263 1  |-  ( A  =  B  ->  -u A  =  -u B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373  (class class class)co 5946   0cc0 7927    - cmin 8245   -ucneg 8246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-iota 5233  df-fv 5280  df-ov 5949  df-neg 8248
This theorem is referenced by:  negeqi  8268  negeqd  8269  neg11  8325  negf1o  8456  recexre  8653  negiso  9030  elz  9376  znegcl  9405  zaddcllemneg  9413  elz2  9446  zindd  9493  infrenegsupex  9717  supinfneg  9718  infsupneg  9719  supminfex  9720  ublbneg  9736  eqreznegel  9737  negm  9738  qnegcl  9759  xnegeq  9951  infssuzex  10378  infssuzcldc  10380  zsupssdc  10383  ceilqval  10453  exp3val  10688  expnegap0  10694  m1expcl2  10708  negfi  11572  dvdsnegb  12152  lcmneg  12429  pcexp  12665  pcneg  12681  znnen  12802  mulgneg2  13525  negcncf  15110  negfcncf  15111  lgsdir2lem4  15541  ex-ceil  15699
  Copyright terms: Public domain W3C validator