ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negeq Unicode version

Theorem negeq 7878
Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.)
Assertion
Ref Expression
negeq  |-  ( A  =  B  ->  -u A  =  -u B )

Proof of Theorem negeq
StepHypRef Expression
1 oveq2 5736 . 2  |-  ( A  =  B  ->  (
0  -  A )  =  ( 0  -  B ) )
2 df-neg 7859 . 2  |-  -u A  =  ( 0  -  A )
3 df-neg 7859 . 2  |-  -u B  =  ( 0  -  B )
41, 2, 33eqtr4g 2172 1  |-  ( A  =  B  ->  -u A  =  -u B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1314  (class class class)co 5728   0cc0 7547    - cmin 7856   -ucneg 7857
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-rex 2396  df-v 2659  df-un 3041  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-iota 5046  df-fv 5089  df-ov 5731  df-neg 7859
This theorem is referenced by:  negeqi  7879  negeqd  7880  neg11  7936  negf1o  8063  recexre  8258  negiso  8623  elz  8960  znegcl  8989  zaddcllemneg  8997  elz2  9026  zindd  9073  infrenegsupex  9291  supinfneg  9292  infsupneg  9293  supminfex  9294  ublbneg  9307  eqreznegel  9308  negm  9309  qnegcl  9330  xnegeq  9503  ceilqval  9972  exp3val  10188  expnegap0  10194  m1expcl2  10208  negfi  10891  dvdsnegb  11358  infssuzex  11490  infssuzcldc  11492  lcmneg  11601  znnen  11756  negcncf  12574  negfcncf  12575  ex-ceil  12631
  Copyright terms: Public domain W3C validator