| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeq | Unicode version | ||
| Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 6009 |
. 2
| |
| 2 | df-neg 8320 |
. 2
| |
| 3 | df-neg 8320 |
. 2
| |
| 4 | 1, 2, 3 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-neg 8320 |
| This theorem is referenced by: negeqi 8340 negeqd 8341 neg11 8397 negf1o 8528 recexre 8725 negiso 9102 elz 9448 znegcl 9477 zaddcllemneg 9485 elz2 9518 zindd 9565 infrenegsupex 9789 supinfneg 9790 infsupneg 9791 supminfex 9792 ublbneg 9808 eqreznegel 9809 negm 9810 qnegcl 9831 xnegeq 10023 infssuzex 10453 infssuzcldc 10455 zsupssdc 10458 ceilqval 10528 exp3val 10763 expnegap0 10769 m1expcl2 10783 negfi 11739 dvdsnegb 12319 lcmneg 12596 pcexp 12832 pcneg 12848 znnen 12969 mulgneg2 13693 negcncf 15279 negfcncf 15280 lgsdir2lem4 15710 ex-ceil 16090 |
| Copyright terms: Public domain | W3C validator |