ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negeq Unicode version

Theorem negeq 8265
Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.)
Assertion
Ref Expression
negeq  |-  ( A  =  B  ->  -u A  =  -u B )

Proof of Theorem negeq
StepHypRef Expression
1 oveq2 5952 . 2  |-  ( A  =  B  ->  (
0  -  A )  =  ( 0  -  B ) )
2 df-neg 8246 . 2  |-  -u A  =  ( 0  -  A )
3 df-neg 8246 . 2  |-  -u B  =  ( 0  -  B )
41, 2, 33eqtr4g 2263 1  |-  ( A  =  B  ->  -u A  =  -u B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373  (class class class)co 5944   0cc0 7925    - cmin 8243   -ucneg 8244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fv 5279  df-ov 5947  df-neg 8246
This theorem is referenced by:  negeqi  8266  negeqd  8267  neg11  8323  negf1o  8454  recexre  8651  negiso  9028  elz  9374  znegcl  9403  zaddcllemneg  9411  elz2  9444  zindd  9491  infrenegsupex  9715  supinfneg  9716  infsupneg  9717  supminfex  9718  ublbneg  9734  eqreznegel  9735  negm  9736  qnegcl  9757  xnegeq  9949  infssuzex  10376  infssuzcldc  10378  zsupssdc  10381  ceilqval  10451  exp3val  10686  expnegap0  10692  m1expcl2  10706  negfi  11539  dvdsnegb  12119  lcmneg  12396  pcexp  12632  pcneg  12648  znnen  12769  mulgneg2  13492  negcncf  15077  negfcncf  15078  lgsdir2lem4  15508  ex-ceil  15662
  Copyright terms: Public domain W3C validator