![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negeq | Unicode version |
Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
Ref | Expression |
---|---|
negeq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5927 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-neg 8195 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | df-neg 8195 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3eqtr4g 2251 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-neg 8195 |
This theorem is referenced by: negeqi 8215 negeqd 8216 neg11 8272 negf1o 8403 recexre 8599 negiso 8976 elz 9322 znegcl 9351 zaddcllemneg 9359 elz2 9391 zindd 9438 infrenegsupex 9662 supinfneg 9663 infsupneg 9664 supminfex 9665 ublbneg 9681 eqreznegel 9682 negm 9683 qnegcl 9704 xnegeq 9896 ceilqval 10380 exp3val 10615 expnegap0 10621 m1expcl2 10635 negfi 11374 dvdsnegb 11954 infssuzex 12089 infssuzcldc 12091 zsupssdc 12094 lcmneg 12215 pcexp 12450 pcneg 12466 znnen 12558 mulgneg2 13229 negcncf 14784 negfcncf 14785 lgsdir2lem4 15188 ex-ceil 15288 |
Copyright terms: Public domain | W3C validator |