ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negeq Unicode version

Theorem negeq 8212
Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.)
Assertion
Ref Expression
negeq  |-  ( A  =  B  ->  -u A  =  -u B )

Proof of Theorem negeq
StepHypRef Expression
1 oveq2 5926 . 2  |-  ( A  =  B  ->  (
0  -  A )  =  ( 0  -  B ) )
2 df-neg 8193 . 2  |-  -u A  =  ( 0  -  A )
3 df-neg 8193 . 2  |-  -u B  =  ( 0  -  B )
41, 2, 33eqtr4g 2251 1  |-  ( A  =  B  ->  -u A  =  -u B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364  (class class class)co 5918   0cc0 7872    - cmin 8190   -ucneg 8191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-neg 8193
This theorem is referenced by:  negeqi  8213  negeqd  8214  neg11  8270  negf1o  8401  recexre  8597  negiso  8974  elz  9319  znegcl  9348  zaddcllemneg  9356  elz2  9388  zindd  9435  infrenegsupex  9659  supinfneg  9660  infsupneg  9661  supminfex  9662  ublbneg  9678  eqreznegel  9679  negm  9680  qnegcl  9701  xnegeq  9893  ceilqval  10377  exp3val  10612  expnegap0  10618  m1expcl2  10632  negfi  11371  dvdsnegb  11951  infssuzex  12086  infssuzcldc  12088  zsupssdc  12091  lcmneg  12212  pcexp  12447  pcneg  12463  znnen  12555  mulgneg2  13226  negcncf  14759  negfcncf  14760  lgsdir2lem4  15147  ex-ceil  15218
  Copyright terms: Public domain W3C validator