ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negeq Unicode version

Theorem negeq 8214
Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.)
Assertion
Ref Expression
negeq  |-  ( A  =  B  ->  -u A  =  -u B )

Proof of Theorem negeq
StepHypRef Expression
1 oveq2 5927 . 2  |-  ( A  =  B  ->  (
0  -  A )  =  ( 0  -  B ) )
2 df-neg 8195 . 2  |-  -u A  =  ( 0  -  A )
3 df-neg 8195 . 2  |-  -u B  =  ( 0  -  B )
41, 2, 33eqtr4g 2251 1  |-  ( A  =  B  ->  -u A  =  -u B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364  (class class class)co 5919   0cc0 7874    - cmin 8192   -ucneg 8193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3158  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-iota 5216  df-fv 5263  df-ov 5922  df-neg 8195
This theorem is referenced by:  negeqi  8215  negeqd  8216  neg11  8272  negf1o  8403  recexre  8599  negiso  8976  elz  9322  znegcl  9351  zaddcllemneg  9359  elz2  9391  zindd  9438  infrenegsupex  9662  supinfneg  9663  infsupneg  9664  supminfex  9665  ublbneg  9681  eqreznegel  9682  negm  9683  qnegcl  9704  xnegeq  9896  ceilqval  10380  exp3val  10615  expnegap0  10621  m1expcl2  10635  negfi  11374  dvdsnegb  11954  infssuzex  12089  infssuzcldc  12091  zsupssdc  12094  lcmneg  12215  pcexp  12450  pcneg  12466  znnen  12558  mulgneg2  13229  negcncf  14784  negfcncf  14785  lgsdir2lem4  15188  ex-ceil  15288
  Copyright terms: Public domain W3C validator