Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negeq | Unicode version |
Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
Ref | Expression |
---|---|
negeq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5850 | . 2 | |
2 | df-neg 8072 | . 2 | |
3 | df-neg 8072 | . 2 | |
4 | 1, 2, 3 | 3eqtr4g 2224 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 (class class class)co 5842 cc0 7753 cmin 8069 cneg 8070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-neg 8072 |
This theorem is referenced by: negeqi 8092 negeqd 8093 neg11 8149 negf1o 8280 recexre 8476 negiso 8850 elz 9193 znegcl 9222 zaddcllemneg 9230 elz2 9262 zindd 9309 infrenegsupex 9532 supinfneg 9533 infsupneg 9534 supminfex 9535 ublbneg 9551 eqreznegel 9552 negm 9553 qnegcl 9574 xnegeq 9763 ceilqval 10241 exp3val 10457 expnegap0 10463 m1expcl2 10477 negfi 11169 dvdsnegb 11748 infssuzex 11882 infssuzcldc 11884 zsupssdc 11887 lcmneg 12006 pcexp 12241 pcneg 12256 znnen 12331 negcncf 13228 negfcncf 13229 lgsdir2lem4 13572 ex-ceil 13607 |
Copyright terms: Public domain | W3C validator |