ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negeq Unicode version

Theorem negeq 8339
Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.)
Assertion
Ref Expression
negeq  |-  ( A  =  B  ->  -u A  =  -u B )

Proof of Theorem negeq
StepHypRef Expression
1 oveq2 6009 . 2  |-  ( A  =  B  ->  (
0  -  A )  =  ( 0  -  B ) )
2 df-neg 8320 . 2  |-  -u A  =  ( 0  -  A )
3 df-neg 8320 . 2  |-  -u B  =  ( 0  -  B )
41, 2, 33eqtr4g 2287 1  |-  ( A  =  B  ->  -u A  =  -u B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395  (class class class)co 6001   0cc0 7999    - cmin 8317   -ucneg 8318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004  df-neg 8320
This theorem is referenced by:  negeqi  8340  negeqd  8341  neg11  8397  negf1o  8528  recexre  8725  negiso  9102  elz  9448  znegcl  9477  zaddcllemneg  9485  elz2  9518  zindd  9565  infrenegsupex  9789  supinfneg  9790  infsupneg  9791  supminfex  9792  ublbneg  9808  eqreznegel  9809  negm  9810  qnegcl  9831  xnegeq  10023  infssuzex  10453  infssuzcldc  10455  zsupssdc  10458  ceilqval  10528  exp3val  10763  expnegap0  10769  m1expcl2  10783  negfi  11739  dvdsnegb  12319  lcmneg  12596  pcexp  12832  pcneg  12848  znnen  12969  mulgneg2  13693  negcncf  15279  negfcncf  15280  lgsdir2lem4  15710  ex-ceil  16090
  Copyright terms: Public domain W3C validator