| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeq | Unicode version | ||
| Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5931 |
. 2
| |
| 2 | df-neg 8202 |
. 2
| |
| 3 | df-neg 8202 |
. 2
| |
| 4 | 1, 2, 3 | 3eqtr4g 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5926 df-neg 8202 |
| This theorem is referenced by: negeqi 8222 negeqd 8223 neg11 8279 negf1o 8410 recexre 8607 negiso 8984 elz 9330 znegcl 9359 zaddcllemneg 9367 elz2 9399 zindd 9446 infrenegsupex 9670 supinfneg 9671 infsupneg 9672 supminfex 9673 ublbneg 9689 eqreznegel 9690 negm 9691 qnegcl 9712 xnegeq 9904 infssuzex 10325 infssuzcldc 10327 zsupssdc 10330 ceilqval 10400 exp3val 10635 expnegap0 10641 m1expcl2 10655 negfi 11395 dvdsnegb 11975 lcmneg 12252 pcexp 12488 pcneg 12504 znnen 12625 mulgneg2 13296 negcncf 14851 negfcncf 14852 lgsdir2lem4 15282 ex-ceil 15382 |
| Copyright terms: Public domain | W3C validator |