ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negeq Unicode version

Theorem negeq 8221
Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.)
Assertion
Ref Expression
negeq  |-  ( A  =  B  ->  -u A  =  -u B )

Proof of Theorem negeq
StepHypRef Expression
1 oveq2 5931 . 2  |-  ( A  =  B  ->  (
0  -  A )  =  ( 0  -  B ) )
2 df-neg 8202 . 2  |-  -u A  =  ( 0  -  A )
3 df-neg 8202 . 2  |-  -u B  =  ( 0  -  B )
41, 2, 33eqtr4g 2254 1  |-  ( A  =  B  ->  -u A  =  -u B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364  (class class class)co 5923   0cc0 7881    - cmin 8199   -ucneg 8200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5926  df-neg 8202
This theorem is referenced by:  negeqi  8222  negeqd  8223  neg11  8279  negf1o  8410  recexre  8607  negiso  8984  elz  9330  znegcl  9359  zaddcllemneg  9367  elz2  9399  zindd  9446  infrenegsupex  9670  supinfneg  9671  infsupneg  9672  supminfex  9673  ublbneg  9689  eqreznegel  9690  negm  9691  qnegcl  9712  xnegeq  9904  infssuzex  10325  infssuzcldc  10327  zsupssdc  10330  ceilqval  10400  exp3val  10635  expnegap0  10641  m1expcl2  10655  negfi  11395  dvdsnegb  11975  lcmneg  12252  pcexp  12488  pcneg  12504  znnen  12625  mulgneg2  13296  negcncf  14851  negfcncf  14852  lgsdir2lem4  15282  ex-ceil  15382
  Copyright terms: Public domain W3C validator