| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeq | Unicode version | ||
| Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5952 |
. 2
| |
| 2 | df-neg 8246 |
. 2
| |
| 3 | df-neg 8246 |
. 2
| |
| 4 | 1, 2, 3 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-neg 8246 |
| This theorem is referenced by: negeqi 8266 negeqd 8267 neg11 8323 negf1o 8454 recexre 8651 negiso 9028 elz 9374 znegcl 9403 zaddcllemneg 9411 elz2 9444 zindd 9491 infrenegsupex 9715 supinfneg 9716 infsupneg 9717 supminfex 9718 ublbneg 9734 eqreznegel 9735 negm 9736 qnegcl 9757 xnegeq 9949 infssuzex 10376 infssuzcldc 10378 zsupssdc 10381 ceilqval 10451 exp3val 10686 expnegap0 10692 m1expcl2 10706 negfi 11539 dvdsnegb 12119 lcmneg 12396 pcexp 12632 pcneg 12648 znnen 12769 mulgneg2 13492 negcncf 15077 negfcncf 15078 lgsdir2lem4 15508 ex-ceil 15662 |
| Copyright terms: Public domain | W3C validator |