| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeq | Unicode version | ||
| Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5975 |
. 2
| |
| 2 | df-neg 8281 |
. 2
| |
| 3 | df-neg 8281 |
. 2
| |
| 4 | 1, 2, 3 | 3eqtr4g 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-neg 8281 |
| This theorem is referenced by: negeqi 8301 negeqd 8302 neg11 8358 negf1o 8489 recexre 8686 negiso 9063 elz 9409 znegcl 9438 zaddcllemneg 9446 elz2 9479 zindd 9526 infrenegsupex 9750 supinfneg 9751 infsupneg 9752 supminfex 9753 ublbneg 9769 eqreznegel 9770 negm 9771 qnegcl 9792 xnegeq 9984 infssuzex 10413 infssuzcldc 10415 zsupssdc 10418 ceilqval 10488 exp3val 10723 expnegap0 10729 m1expcl2 10743 negfi 11654 dvdsnegb 12234 lcmneg 12511 pcexp 12747 pcneg 12763 znnen 12884 mulgneg2 13607 negcncf 15192 negfcncf 15193 lgsdir2lem4 15623 ex-ceil 15862 |
| Copyright terms: Public domain | W3C validator |