![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negeq | Unicode version |
Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
Ref | Expression |
---|---|
negeq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5736 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-neg 7859 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | df-neg 7859 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3eqtr4g 2172 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-rex 2396 df-v 2659 df-un 3041 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-iota 5046 df-fv 5089 df-ov 5731 df-neg 7859 |
This theorem is referenced by: negeqi 7879 negeqd 7880 neg11 7936 negf1o 8063 recexre 8258 negiso 8623 elz 8960 znegcl 8989 zaddcllemneg 8997 elz2 9026 zindd 9073 infrenegsupex 9291 supinfneg 9292 infsupneg 9293 supminfex 9294 ublbneg 9307 eqreznegel 9308 negm 9309 qnegcl 9330 xnegeq 9503 ceilqval 9972 exp3val 10188 expnegap0 10194 m1expcl2 10208 negfi 10891 dvdsnegb 11358 infssuzex 11490 infssuzcldc 11492 lcmneg 11601 znnen 11756 negcncf 12574 negfcncf 12575 ex-ceil 12631 |
Copyright terms: Public domain | W3C validator |