ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negeq Unicode version

Theorem negeq 8300
Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.)
Assertion
Ref Expression
negeq  |-  ( A  =  B  ->  -u A  =  -u B )

Proof of Theorem negeq
StepHypRef Expression
1 oveq2 5975 . 2  |-  ( A  =  B  ->  (
0  -  A )  =  ( 0  -  B ) )
2 df-neg 8281 . 2  |-  -u A  =  ( 0  -  A )
3 df-neg 8281 . 2  |-  -u B  =  ( 0  -  B )
41, 2, 33eqtr4g 2265 1  |-  ( A  =  B  ->  -u A  =  -u B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373  (class class class)co 5967   0cc0 7960    - cmin 8278   -ucneg 8279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970  df-neg 8281
This theorem is referenced by:  negeqi  8301  negeqd  8302  neg11  8358  negf1o  8489  recexre  8686  negiso  9063  elz  9409  znegcl  9438  zaddcllemneg  9446  elz2  9479  zindd  9526  infrenegsupex  9750  supinfneg  9751  infsupneg  9752  supminfex  9753  ublbneg  9769  eqreznegel  9770  negm  9771  qnegcl  9792  xnegeq  9984  infssuzex  10413  infssuzcldc  10415  zsupssdc  10418  ceilqval  10488  exp3val  10723  expnegap0  10729  m1expcl2  10743  negfi  11654  dvdsnegb  12234  lcmneg  12511  pcexp  12747  pcneg  12763  znnen  12884  mulgneg2  13607  negcncf  15192  negfcncf  15193  lgsdir2lem4  15623  ex-ceil  15862
  Copyright terms: Public domain W3C validator