| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeq | Unicode version | ||
| Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5930 |
. 2
| |
| 2 | df-neg 8200 |
. 2
| |
| 3 | df-neg 8200 |
. 2
| |
| 4 | 1, 2, 3 | 3eqtr4g 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-neg 8200 |
| This theorem is referenced by: negeqi 8220 negeqd 8221 neg11 8277 negf1o 8408 recexre 8605 negiso 8982 elz 9328 znegcl 9357 zaddcllemneg 9365 elz2 9397 zindd 9444 infrenegsupex 9668 supinfneg 9669 infsupneg 9670 supminfex 9671 ublbneg 9687 eqreznegel 9688 negm 9689 qnegcl 9710 xnegeq 9902 infssuzex 10323 infssuzcldc 10325 zsupssdc 10328 ceilqval 10398 exp3val 10633 expnegap0 10639 m1expcl2 10653 negfi 11393 dvdsnegb 11973 lcmneg 12242 pcexp 12478 pcneg 12494 znnen 12615 mulgneg2 13286 negcncf 14841 negfcncf 14842 lgsdir2lem4 15272 ex-ceil 15372 |
| Copyright terms: Public domain | W3C validator |