| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeq | Unicode version | ||
| Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5954 |
. 2
| |
| 2 | df-neg 8248 |
. 2
| |
| 3 | df-neg 8248 |
. 2
| |
| 4 | 1, 2, 3 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 df-neg 8248 |
| This theorem is referenced by: negeqi 8268 negeqd 8269 neg11 8325 negf1o 8456 recexre 8653 negiso 9030 elz 9376 znegcl 9405 zaddcllemneg 9413 elz2 9446 zindd 9493 infrenegsupex 9717 supinfneg 9718 infsupneg 9719 supminfex 9720 ublbneg 9736 eqreznegel 9737 negm 9738 qnegcl 9759 xnegeq 9951 infssuzex 10378 infssuzcldc 10380 zsupssdc 10383 ceilqval 10453 exp3val 10688 expnegap0 10694 m1expcl2 10708 negfi 11572 dvdsnegb 12152 lcmneg 12429 pcexp 12665 pcneg 12681 znnen 12802 mulgneg2 13525 negcncf 15110 negfcncf 15111 lgsdir2lem4 15541 ex-ceil 15699 |
| Copyright terms: Public domain | W3C validator |