ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrabw Unicode version

Theorem nfrabw 2688
Description: A variable not free in a wff remains so in a restricted class abstraction. (Contributed by Jim Kingdon, 19-Jul-2018.)
Hypotheses
Ref Expression
nfrabw.1  |-  F/ x ph
nfrabw.2  |-  F/_ x A
Assertion
Ref Expression
nfrabw  |-  F/_ x { y  e.  A  |  ph }
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)

Proof of Theorem nfrabw
StepHypRef Expression
1 df-rab 2494 . 2  |-  { y  e.  A  |  ph }  =  { y  |  ( y  e.  A  /\  ph ) }
2 nfrabw.2 . . . . 5  |-  F/_ x A
32nfcri 2343 . . . 4  |-  F/ x  y  e.  A
4 nfrabw.1 . . . 4  |-  F/ x ph
53, 4nfan 1589 . . 3  |-  F/ x
( y  e.  A  /\  ph )
65nfab 2354 . 2  |-  F/_ x { y  |  ( y  e.  A  /\  ph ) }
71, 6nfcxfr 2346 1  |-  F/_ x { y  e.  A  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104   F/wnf 1484    e. wcel 2177   {cab 2192   F/_wnfc 2336   {crab 2489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494
This theorem is referenced by:  nfdif  3298  nfin  3383  nfse  4395  elfvmptrab1  5686  elovmporab  6158  elovmporab1w  6159  mpoxopoveq  6338  nfsup  7108  caucvgprprlemaddq  7836  ctiunct  12881
  Copyright terms: Public domain W3C validator