ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrabw GIF version

Theorem nfrabw 2678
Description: A variable not free in a wff remains so in a restricted class abstraction. (Contributed by Jim Kingdon, 19-Jul-2018.)
Hypotheses
Ref Expression
nfrabw.1 𝑥𝜑
nfrabw.2 𝑥𝐴
Assertion
Ref Expression
nfrabw 𝑥{𝑦𝐴𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfrabw
StepHypRef Expression
1 df-rab 2484 . 2 {𝑦𝐴𝜑} = {𝑦 ∣ (𝑦𝐴𝜑)}
2 nfrabw.2 . . . . 5 𝑥𝐴
32nfcri 2333 . . . 4 𝑥 𝑦𝐴
4 nfrabw.1 . . . 4 𝑥𝜑
53, 4nfan 1579 . . 3 𝑥(𝑦𝐴𝜑)
65nfab 2344 . 2 𝑥{𝑦 ∣ (𝑦𝐴𝜑)}
71, 6nfcxfr 2336 1 𝑥{𝑦𝐴𝜑}
Colors of variables: wff set class
Syntax hints:  wa 104  wnf 1474  wcel 2167  {cab 2182  wnfc 2326  {crab 2479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484
This theorem is referenced by:  nfdif  3284  nfin  3369  nfse  4376  elfvmptrab1  5656  elovmporab  6123  elovmporab1w  6124  mpoxopoveq  6298  nfsup  7056  caucvgprprlemaddq  7773  ctiunct  12633
  Copyright terms: Public domain W3C validator