![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfrabw | GIF version |
Description: A variable not free in a wff remains so in a restricted class abstraction. (Contributed by Jim Kingdon, 19-Jul-2018.) |
Ref | Expression |
---|---|
nfrabw.1 | ⊢ Ⅎ𝑥𝜑 |
nfrabw.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfrabw | ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2484 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} | |
2 | nfrabw.2 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2333 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfrabw.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 3, 4 | nfan 1579 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
6 | 5 | nfab 2344 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
7 | 1, 6 | nfcxfr 2336 | 1 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 Ⅎwnf 1474 ∈ wcel 2167 {cab 2182 Ⅎwnfc 2326 {crab 2479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 |
This theorem is referenced by: nfdif 3284 nfin 3369 nfse 4376 elfvmptrab1 5656 elovmporab 6123 elovmporab1w 6124 mpoxopoveq 6298 nfsup 7056 caucvgprprlemaddq 7773 ctiunct 12633 |
Copyright terms: Public domain | W3C validator |