ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abrexex2 Unicode version

Theorem abrexex2 6209
Description: Existence of an existentially restricted class abstraction.  ph is normally has free-variable parameters  x and  y. See also abrexex 6202. (Contributed by NM, 12-Sep-2004.)
Hypotheses
Ref Expression
abrexex2.1  |-  A  e. 
_V
abrexex2.2  |-  { y  |  ph }  e.  _V
Assertion
Ref Expression
abrexex2  |-  { y  |  E. x  e.  A  ph }  e.  _V
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem abrexex2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1551 . . . 4  |-  F/ z E. x  e.  A  ph
2 nfcv 2348 . . . . 5  |-  F/_ y A
3 nfs1v 1967 . . . . 5  |-  F/ y [ z  /  y ] ph
42, 3nfrexw 2545 . . . 4  |-  F/ y E. x  e.  A  [ z  /  y ] ph
5 sbequ12 1794 . . . . 5  |-  ( y  =  z  ->  ( ph 
<->  [ z  /  y ] ph ) )
65rexbidv 2507 . . . 4  |-  ( y  =  z  ->  ( E. x  e.  A  ph  <->  E. x  e.  A  [
z  /  y ]
ph ) )
71, 4, 6cbvab 2329 . . 3  |-  { y  |  E. x  e.  A  ph }  =  { z  |  E. x  e.  A  [
z  /  y ]
ph }
8 df-clab 2192 . . . . 5  |-  ( z  e.  { y  | 
ph }  <->  [ z  /  y ] ph )
98rexbii 2513 . . . 4  |-  ( E. x  e.  A  z  e.  { y  | 
ph }  <->  E. x  e.  A  [ z  /  y ] ph )
109abbii 2321 . . 3  |-  { z  |  E. x  e.  A  z  e.  {
y  |  ph } }  =  { z  |  E. x  e.  A  [ z  /  y ] ph }
117, 10eqtr4i 2229 . 2  |-  { y  |  E. x  e.  A  ph }  =  { z  |  E. x  e.  A  z  e.  { y  |  ph } }
12 df-iun 3929 . . 3  |-  U_ x  e.  A  { y  |  ph }  =  {
z  |  E. x  e.  A  z  e.  { y  |  ph } }
13 abrexex2.1 . . . 4  |-  A  e. 
_V
14 abrexex2.2 . . . 4  |-  { y  |  ph }  e.  _V
1513, 14iunex 6208 . . 3  |-  U_ x  e.  A  { y  |  ph }  e.  _V
1612, 15eqeltrri 2279 . 2  |-  { z  |  E. x  e.  A  z  e.  {
y  |  ph } }  e.  _V
1711, 16eqeltri 2278 1  |-  { y  |  E. x  e.  A  ph }  e.  _V
Colors of variables: wff set class
Syntax hints:   [wsb 1785    e. wcel 2176   {cab 2191   E.wrex 2485   _Vcvv 2772   U_ciun 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279
This theorem is referenced by:  abexssex  6210  abexex  6211  oprabrexex2  6215  ab2rexex  6216  ab2rexex2  6217
  Copyright terms: Public domain W3C validator