ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abrexex2g Unicode version

Theorem abrexex2g 6121
Description: Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
abrexex2g  |-  ( ( A  e.  V  /\  A. x  e.  A  {
y  |  ph }  e.  W )  ->  { y  |  E. x  e.  A  ph }  e.  _V )
Distinct variable groups:    x, A, y   
x, V, y    x, W, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem abrexex2g
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1528 . . . 4  |-  F/ z E. x  e.  A  ph
2 nfcv 2319 . . . . 5  |-  F/_ y A
3 nfs1v 1939 . . . . 5  |-  F/ y [ z  /  y ] ph
42, 3nfrexxy 2516 . . . 4  |-  F/ y E. x  e.  A  [ z  /  y ] ph
5 sbequ12 1771 . . . . 5  |-  ( y  =  z  ->  ( ph 
<->  [ z  /  y ] ph ) )
65rexbidv 2478 . . . 4  |-  ( y  =  z  ->  ( E. x  e.  A  ph  <->  E. x  e.  A  [
z  /  y ]
ph ) )
71, 4, 6cbvab 2301 . . 3  |-  { y  |  E. x  e.  A  ph }  =  { z  |  E. x  e.  A  [
z  /  y ]
ph }
8 df-clab 2164 . . . . 5  |-  ( z  e.  { y  | 
ph }  <->  [ z  /  y ] ph )
98rexbii 2484 . . . 4  |-  ( E. x  e.  A  z  e.  { y  | 
ph }  <->  E. x  e.  A  [ z  /  y ] ph )
109abbii 2293 . . 3  |-  { z  |  E. x  e.  A  z  e.  {
y  |  ph } }  =  { z  |  E. x  e.  A  [ z  /  y ] ph }
117, 10eqtr4i 2201 . 2  |-  { y  |  E. x  e.  A  ph }  =  { z  |  E. x  e.  A  z  e.  { y  |  ph } }
12 df-iun 3889 . . 3  |-  U_ x  e.  A  { y  |  ph }  =  {
z  |  E. x  e.  A  z  e.  { y  |  ph } }
13 iunexg 6120 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  {
y  |  ph }  e.  W )  ->  U_ x  e.  A  { y  |  ph }  e.  _V )
1412, 13eqeltrrid 2265 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  {
y  |  ph }  e.  W )  ->  { z  |  E. x  e.  A  z  e.  {
y  |  ph } }  e.  _V )
1511, 14eqeltrid 2264 1  |-  ( ( A  e.  V  /\  A. x  e.  A  {
y  |  ph }  e.  W )  ->  { y  |  E. x  e.  A  ph }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   [wsb 1762    e. wcel 2148   {cab 2163   A.wral 2455   E.wrex 2456   _Vcvv 2738   U_ciun 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225
This theorem is referenced by:  frecabex  6399
  Copyright terms: Public domain W3C validator