ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnpredlt Unicode version

Theorem nnpredlt 4661
Description: The predecessor (see nnpredcl 4660) of a nonzero natural number is less than (see df-iord 4402) that number. (Contributed by Jim Kingdon, 14-Sep-2024.)
Assertion
Ref Expression
nnpredlt  |-  ( ( A  e.  om  /\  A  =/=  (/) )  ->  U. A  e.  A )

Proof of Theorem nnpredlt
StepHypRef Expression
1 nnpredcl 4660 . . . 4  |-  ( A  e.  om  ->  U. A  e.  om )
21adantr 276 . . 3  |-  ( ( A  e.  om  /\  A  =/=  (/) )  ->  U. A  e.  om )
3 sucidg 4452 . . 3  |-  ( U. A  e.  om  ->  U. A  e.  suc  U. A )
42, 3syl 14 . 2  |-  ( ( A  e.  om  /\  A  =/=  (/) )  ->  U. A  e.  suc  U. A )
5 nnsucpred 4654 . 2  |-  ( ( A  e.  om  /\  A  =/=  (/) )  ->  suc  U. A  =  A )
64, 5eleqtrd 2275 1  |-  ( ( A  e.  om  /\  A  =/=  (/) )  ->  U. A  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167    =/= wne 2367   (/)c0 3451   U.cuni 3840   suc csuc 4401   omcom 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-uni 3841  df-int 3876  df-tr 4133  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628
This theorem is referenced by:  nninfisollemne  7206
  Copyright terms: Public domain W3C validator