![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnpredlt | GIF version |
Description: The predecessor (see nnpredcl 4656) of a nonzero natural number is less than (see df-iord 4398) that number. (Contributed by Jim Kingdon, 14-Sep-2024.) |
Ref | Expression |
---|---|
nnpredlt | ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnpredcl 4656 | . . . 4 ⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) | |
2 | 1 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ ω) |
3 | sucidg 4448 | . . 3 ⊢ (∪ 𝐴 ∈ ω → ∪ 𝐴 ∈ suc ∪ 𝐴) | |
4 | 2, 3 | syl 14 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ suc ∪ 𝐴) |
5 | nnsucpred 4650 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → suc ∪ 𝐴 = 𝐴) | |
6 | 4, 5 | eleqtrd 2272 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ≠ wne 2364 ∅c0 3447 ∪ cuni 3836 suc csuc 4397 ωcom 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-int 3872 df-tr 4129 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 |
This theorem is referenced by: nninfisollemne 7192 |
Copyright terms: Public domain | W3C validator |