![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnpredlt | GIF version |
Description: The predecessor (see nnpredcl 4623) of a nonzero natural number is less than (see df-iord 4367) that number. (Contributed by Jim Kingdon, 14-Sep-2024.) |
Ref | Expression |
---|---|
nnpredlt | ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnpredcl 4623 | . . . 4 ⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) | |
2 | 1 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ ω) |
3 | sucidg 4417 | . . 3 ⊢ (∪ 𝐴 ∈ ω → ∪ 𝐴 ∈ suc ∪ 𝐴) | |
4 | 2, 3 | syl 14 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ suc ∪ 𝐴) |
5 | nnsucpred 4617 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → suc ∪ 𝐴 = 𝐴) | |
6 | 4, 5 | eleqtrd 2256 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 ≠ wne 2347 ∅c0 3423 ∪ cuni 3810 suc csuc 4366 ωcom 4590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-iinf 4588 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2740 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-uni 3811 df-int 3846 df-tr 4103 df-iord 4367 df-on 4369 df-suc 4372 df-iom 4591 |
This theorem is referenced by: nninfisollemne 7129 |
Copyright terms: Public domain | W3C validator |