ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnpredlt GIF version

Theorem nnpredlt 4670
Description: The predecessor (see nnpredcl 4669) of a nonzero natural number is less than (see df-iord 4411) that number. (Contributed by Jim Kingdon, 14-Sep-2024.)
Assertion
Ref Expression
nnpredlt ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → 𝐴𝐴)

Proof of Theorem nnpredlt
StepHypRef Expression
1 nnpredcl 4669 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ ω)
21adantr 276 . . 3 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → 𝐴 ∈ ω)
3 sucidg 4461 . . 3 ( 𝐴 ∈ ω → 𝐴 ∈ suc 𝐴)
42, 3syl 14 . 2 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → 𝐴 ∈ suc 𝐴)
5 nnsucpred 4663 . 2 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → suc 𝐴 = 𝐴)
64, 5eleqtrd 2283 1 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2175  wne 2375  c0 3459   cuni 3849  suc csuc 4410  ωcom 4636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850  df-int 3885  df-tr 4142  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637
This theorem is referenced by:  nninfisollemne  7215
  Copyright terms: Public domain W3C validator