| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfisollemne | Unicode version | ||
| Description: Lemma for nninfisol 7261. A case where |
| Ref | Expression |
|---|---|
| nninfisol.x |
|
| nninfisol.0 |
|
| nninfisol.n |
|
| nninfisollemne.s |
|
| nninfisollemne.0 |
|
| Ref | Expression |
|---|---|
| nninfisollemne |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nninfisollemne.0 |
. . . . 5
| |
| 2 | 1 | adantr 276 |
. . . 4
|
| 3 | simpr 110 |
. . . . . . . 8
| |
| 4 | 3 | fveq1d 5601 |
. . . . . . 7
|
| 5 | eqid 2207 |
. . . . . . . . . 10
| |
| 6 | eleq1 2270 |
. . . . . . . . . . 11
| |
| 7 | 6 | ifbid 3601 |
. . . . . . . . . 10
|
| 8 | nninfisol.n |
. . . . . . . . . . 11
| |
| 9 | nnpredcl 4689 |
. . . . . . . . . . 11
| |
| 10 | 8, 9 | syl 14 |
. . . . . . . . . 10
|
| 11 | nninfisollemne.s |
. . . . . . . . . . . . 13
| |
| 12 | nnpredlt 4690 |
. . . . . . . . . . . . 13
| |
| 13 | 8, 11, 12 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 14 | 13 | iftrued 3586 |
. . . . . . . . . . 11
|
| 15 | 1lt2o 6551 |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | eqeltrdi 2298 |
. . . . . . . . . 10
|
| 17 | 5, 7, 10, 16 | fvmptd3 5696 |
. . . . . . . . 9
|
| 18 | 17, 14 | eqtrd 2240 |
. . . . . . . 8
|
| 19 | 18 | adantr 276 |
. . . . . . 7
|
| 20 | 4, 19 | eqtr3d 2242 |
. . . . . 6
|
| 21 | 1n0 6541 |
. . . . . 6
| |
| 22 | pm13.181 2460 |
. . . . . 6
| |
| 23 | 20, 21, 22 | sylancl 413 |
. . . . 5
|
| 24 | 23 | neneqd 2399 |
. . . 4
|
| 25 | 2, 24 | pm2.65da 663 |
. . 3
|
| 26 | 25 | olcd 736 |
. 2
|
| 27 | df-dc 837 |
. 2
| |
| 28 | 26, 27 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-1o 6525 df-2o 6526 |
| This theorem is referenced by: nninfisol 7261 |
| Copyright terms: Public domain | W3C validator |