ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfisollemne Unicode version

Theorem nninfisollemne 7107
Description: Lemma for nninfisol 7109. A case where  N is a successor and  N and  X are not equal. (Contributed by Jim Kingdon, 13-Sep-2024.)
Hypotheses
Ref Expression
nninfisol.x  |-  ( ph  ->  X  e. )
nninfisol.0  |-  ( ph  ->  ( X `  N
)  =  (/) )
nninfisol.n  |-  ( ph  ->  N  e.  om )
nninfisollemne.s  |-  ( ph  ->  N  =/=  (/) )
nninfisollemne.0  |-  ( ph  ->  ( X `  U. N )  =  (/) )
Assertion
Ref Expression
nninfisollemne  |-  ( ph  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
Distinct variable group:    i, N
Allowed substitution hints:    ph( i)    X( i)

Proof of Theorem nninfisollemne
StepHypRef Expression
1 nninfisollemne.0 . . . . 5  |-  ( ph  ->  ( X `  U. N )  =  (/) )
21adantr 274 . . . 4  |-  ( (
ph  /\  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )  ->  ( X `  U. N )  =  (/) )
3 simpr 109 . . . . . . . 8  |-  ( (
ph  /\  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )  ->  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
43fveq1d 5498 . . . . . . 7  |-  ( (
ph  /\  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )  ->  (
( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `
 U. N )  =  ( X `  U. N ) )
5 eqid 2170 . . . . . . . . . 10  |-  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) )
6 eleq1 2233 . . . . . . . . . . 11  |-  ( i  =  U. N  -> 
( i  e.  N  <->  U. N  e.  N ) )
76ifbid 3547 . . . . . . . . . 10  |-  ( i  =  U. N  ->  if ( i  e.  N ,  1o ,  (/) )  =  if ( U. N  e.  N ,  1o ,  (/) ) )
8 nninfisol.n . . . . . . . . . . 11  |-  ( ph  ->  N  e.  om )
9 nnpredcl 4607 . . . . . . . . . . 11  |-  ( N  e.  om  ->  U. N  e.  om )
108, 9syl 14 . . . . . . . . . 10  |-  ( ph  ->  U. N  e.  om )
11 nninfisollemne.s . . . . . . . . . . . . 13  |-  ( ph  ->  N  =/=  (/) )
12 nnpredlt 4608 . . . . . . . . . . . . 13  |-  ( ( N  e.  om  /\  N  =/=  (/) )  ->  U. N  e.  N )
138, 11, 12syl2anc 409 . . . . . . . . . . . 12  |-  ( ph  ->  U. N  e.  N
)
1413iftrued 3533 . . . . . . . . . . 11  |-  ( ph  ->  if ( U. N  e.  N ,  1o ,  (/) )  =  1o )
15 1lt2o 6421 . . . . . . . . . . 11  |-  1o  e.  2o
1614, 15eqeltrdi 2261 . . . . . . . . . 10  |-  ( ph  ->  if ( U. N  e.  N ,  1o ,  (/) )  e.  2o )
175, 7, 10, 16fvmptd3 5589 . . . . . . . . 9  |-  ( ph  ->  ( ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `  U. N )  =  if ( U. N  e.  N ,  1o ,  (/) ) )
1817, 14eqtrd 2203 . . . . . . . 8  |-  ( ph  ->  ( ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `  U. N )  =  1o )
1918adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )  ->  (
( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `
 U. N )  =  1o )
204, 19eqtr3d 2205 . . . . . 6  |-  ( (
ph  /\  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )  ->  ( X `  U. N )  =  1o )
21 1n0 6411 . . . . . 6  |-  1o  =/=  (/)
22 pm13.181 2422 . . . . . 6  |-  ( ( ( X `  U. N )  =  1o 
/\  1o  =/=  (/) )  -> 
( X `  U. N )  =/=  (/) )
2320, 21, 22sylancl 411 . . . . 5  |-  ( (
ph  /\  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )  ->  ( X `  U. N )  =/=  (/) )
2423neneqd 2361 . . . 4  |-  ( (
ph  /\  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )  ->  -.  ( X `  U. N
)  =  (/) )
252, 24pm2.65da 656 . . 3  |-  ( ph  ->  -.  ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
2625olcd 729 . 2  |-  ( ph  ->  ( ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X  \/  -.  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X ) )
27 df-dc 830 . 2  |-  (DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X  <->  ( (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X  \/  -.  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X ) )
2826, 27sylibr 133 1  |-  ( ph  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703  DECID wdc 829    = wceq 1348    e. wcel 2141    =/= wne 2340   (/)c0 3414   ifcif 3526   U.cuni 3796    |-> cmpt 4050   omcom 4574   ` cfv 5198   1oc1o 6388   2oc2o 6389  ℕxnninf 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-1o 6395  df-2o 6396
This theorem is referenced by:  nninfisol  7109
  Copyright terms: Public domain W3C validator