| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfisollemne | Unicode version | ||
| Description: Lemma for nninfisol 7300. A case where |
| Ref | Expression |
|---|---|
| nninfisol.x |
|
| nninfisol.0 |
|
| nninfisol.n |
|
| nninfisollemne.s |
|
| nninfisollemne.0 |
|
| Ref | Expression |
|---|---|
| nninfisollemne |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nninfisollemne.0 |
. . . . 5
| |
| 2 | 1 | adantr 276 |
. . . 4
|
| 3 | simpr 110 |
. . . . . . . 8
| |
| 4 | 3 | fveq1d 5629 |
. . . . . . 7
|
| 5 | eqid 2229 |
. . . . . . . . . 10
| |
| 6 | eleq1 2292 |
. . . . . . . . . . 11
| |
| 7 | 6 | ifbid 3624 |
. . . . . . . . . 10
|
| 8 | nninfisol.n |
. . . . . . . . . . 11
| |
| 9 | nnpredcl 4715 |
. . . . . . . . . . 11
| |
| 10 | 8, 9 | syl 14 |
. . . . . . . . . 10
|
| 11 | nninfisollemne.s |
. . . . . . . . . . . . 13
| |
| 12 | nnpredlt 4716 |
. . . . . . . . . . . . 13
| |
| 13 | 8, 11, 12 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 14 | 13 | iftrued 3609 |
. . . . . . . . . . 11
|
| 15 | 1lt2o 6588 |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | eqeltrdi 2320 |
. . . . . . . . . 10
|
| 17 | 5, 7, 10, 16 | fvmptd3 5728 |
. . . . . . . . 9
|
| 18 | 17, 14 | eqtrd 2262 |
. . . . . . . 8
|
| 19 | 18 | adantr 276 |
. . . . . . 7
|
| 20 | 4, 19 | eqtr3d 2264 |
. . . . . 6
|
| 21 | 1n0 6578 |
. . . . . 6
| |
| 22 | pm13.181 2482 |
. . . . . 6
| |
| 23 | 20, 21, 22 | sylancl 413 |
. . . . 5
|
| 24 | 23 | neneqd 2421 |
. . . 4
|
| 25 | 2, 24 | pm2.65da 665 |
. . 3
|
| 26 | 25 | olcd 739 |
. 2
|
| 27 | df-dc 840 |
. 2
| |
| 28 | 26, 27 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-1o 6562 df-2o 6563 |
| This theorem is referenced by: nninfisol 7300 |
| Copyright terms: Public domain | W3C validator |