Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nninfisollemne | Unicode version |
Description: Lemma for nninfisol 7097. A case where is a successor and and are not equal. (Contributed by Jim Kingdon, 13-Sep-2024.) |
Ref | Expression |
---|---|
nninfisol.x | ℕ∞ |
nninfisol.0 | |
nninfisol.n | |
nninfisollemne.s | |
nninfisollemne.0 |
Ref | Expression |
---|---|
nninfisollemne | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nninfisollemne.0 | . . . . 5 | |
2 | 1 | adantr 274 | . . . 4 |
3 | simpr 109 | . . . . . . . 8 | |
4 | 3 | fveq1d 5488 | . . . . . . 7 |
5 | eqid 2165 | . . . . . . . . . 10 | |
6 | eleq1 2229 | . . . . . . . . . . 11 | |
7 | 6 | ifbid 3541 | . . . . . . . . . 10 |
8 | nninfisol.n | . . . . . . . . . . 11 | |
9 | nnpredcl 4600 | . . . . . . . . . . 11 | |
10 | 8, 9 | syl 14 | . . . . . . . . . 10 |
11 | nninfisollemne.s | . . . . . . . . . . . . 13 | |
12 | nnpredlt 4601 | . . . . . . . . . . . . 13 | |
13 | 8, 11, 12 | syl2anc 409 | . . . . . . . . . . . 12 |
14 | 13 | iftrued 3527 | . . . . . . . . . . 11 |
15 | 1lt2o 6410 | . . . . . . . . . . 11 | |
16 | 14, 15 | eqeltrdi 2257 | . . . . . . . . . 10 |
17 | 5, 7, 10, 16 | fvmptd3 5579 | . . . . . . . . 9 |
18 | 17, 14 | eqtrd 2198 | . . . . . . . 8 |
19 | 18 | adantr 274 | . . . . . . 7 |
20 | 4, 19 | eqtr3d 2200 | . . . . . 6 |
21 | 1n0 6400 | . . . . . 6 | |
22 | pm13.181 2418 | . . . . . 6 | |
23 | 20, 21, 22 | sylancl 410 | . . . . 5 |
24 | 23 | neneqd 2357 | . . . 4 |
25 | 2, 24 | pm2.65da 651 | . . 3 |
26 | 25 | olcd 724 | . 2 |
27 | df-dc 825 | . 2 DECID | |
28 | 26, 27 | sylibr 133 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 824 wceq 1343 wcel 2136 wne 2336 c0 3409 cif 3520 cuni 3789 cmpt 4043 com 4567 cfv 5188 c1o 6377 c2o 6378 ℕ∞xnninf 7084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-1o 6384 df-2o 6385 |
This theorem is referenced by: nninfisol 7097 |
Copyright terms: Public domain | W3C validator |