ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnpredcl Unicode version

Theorem nnpredcl 4623
Description: The predecessor of a natural number is a natural number. This theorem is most interesting when the natural number is a successor (as seen in theorems like onsucuni2 4564) but also holds when it is  (/) by uni0 3837. (Contributed by Jim Kingdon, 31-Jul-2022.)
Assertion
Ref Expression
nnpredcl  |-  ( A  e.  om  ->  U. A  e.  om )

Proof of Theorem nnpredcl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 unieq 3819 . . . 4  |-  ( A  =  (/)  ->  U. A  =  U. (/) )
2 uni0 3837 . . . . 5  |-  U. (/)  =  (/)
3 peano1 4594 . . . . 5  |-  (/)  e.  om
42, 3eqeltri 2250 . . . 4  |-  U. (/)  e.  om
51, 4eqeltrdi 2268 . . 3  |-  ( A  =  (/)  ->  U. A  e.  om )
65adantl 277 . 2  |-  ( ( A  e.  om  /\  A  =  (/) )  ->  U. A  e.  om )
7 nnon 4610 . . . . . 6  |-  ( A  e.  om  ->  A  e.  On )
87adantr 276 . . . . 5  |-  ( ( A  e.  om  /\  E. x  e.  om  A  =  suc  x )  ->  A  e.  On )
9 simpr 110 . . . . 5  |-  ( ( A  e.  om  /\  E. x  e.  om  A  =  suc  x )  ->  E. x  e.  om  A  =  suc  x )
10 onsucuni2 4564 . . . . . . 7  |-  ( ( A  e.  On  /\  A  =  suc  x )  ->  suc  U. A  =  A )
1110ex 115 . . . . . 6  |-  ( A  e.  On  ->  ( A  =  suc  x  ->  suc  U. A  =  A ) )
1211rexlimdvw 2598 . . . . 5  |-  ( A  e.  On  ->  ( E. x  e.  om  A  =  suc  x  ->  suc  U. A  =  A ) )
138, 9, 12sylc 62 . . . 4  |-  ( ( A  e.  om  /\  E. x  e.  om  A  =  suc  x )  ->  suc  U. A  =  A )
14 simpl 109 . . . 4  |-  ( ( A  e.  om  /\  E. x  e.  om  A  =  suc  x )  ->  A  e.  om )
1513, 14eqeltrd 2254 . . 3  |-  ( ( A  e.  om  /\  E. x  e.  om  A  =  suc  x )  ->  suc  U. A  e.  om )
16 peano2b 4615 . . 3  |-  ( U. A  e.  om  <->  suc  U. A  e.  om )
1715, 16sylibr 134 . 2  |-  ( ( A  e.  om  /\  E. x  e.  om  A  =  suc  x )  ->  U. A  e.  om )
18 nn0suc 4604 . 2  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
196, 17, 18mpjaodan 798 1  |-  ( A  e.  om  ->  U. A  e.  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   E.wrex 2456   (/)c0 3423   U.cuni 3810   Oncon0 4364   suc csuc 4366   omcom 4590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-uni 3811  df-int 3846  df-tr 4103  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591
This theorem is referenced by:  nnpredlt  4624  omp1eomlem  7093  ctmlemr  7107  nnnninfeq2  7127  nninfisollemne  7129  nninfisol  7131  nnsf  14757  peano4nninf  14758
  Copyright terms: Public domain W3C validator