| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnpredcl | Unicode version | ||
| Description: The predecessor of a
natural number is a natural number. This theorem
is most interesting when the natural number is a successor (as seen in
theorems like onsucuni2 4630) but also holds when it is |
| Ref | Expression |
|---|---|
| nnpredcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 3873 |
. . . 4
| |
| 2 | uni0 3891 |
. . . . 5
| |
| 3 | peano1 4660 |
. . . . 5
| |
| 4 | 2, 3 | eqeltri 2280 |
. . . 4
|
| 5 | 1, 4 | eqeltrdi 2298 |
. . 3
|
| 6 | 5 | adantl 277 |
. 2
|
| 7 | nnon 4676 |
. . . . . 6
| |
| 8 | 7 | adantr 276 |
. . . . 5
|
| 9 | simpr 110 |
. . . . 5
| |
| 10 | onsucuni2 4630 |
. . . . . . 7
| |
| 11 | 10 | ex 115 |
. . . . . 6
|
| 12 | 11 | rexlimdvw 2629 |
. . . . 5
|
| 13 | 8, 9, 12 | sylc 62 |
. . . 4
|
| 14 | simpl 109 |
. . . 4
| |
| 15 | 13, 14 | eqeltrd 2284 |
. . 3
|
| 16 | peano2b 4681 |
. . 3
| |
| 17 | 15, 16 | sylibr 134 |
. 2
|
| 18 | nn0suc 4670 |
. 2
| |
| 19 | 6, 17, 18 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-tr 4159 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 |
| This theorem is referenced by: nnpredlt 4690 omp1eomlem 7222 ctmlemr 7236 nnnninfeq2 7257 nninfisollemne 7259 nninfisol 7261 nnsf 16144 peano4nninf 16145 |
| Copyright terms: Public domain | W3C validator |