ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnpredcl Unicode version

Theorem nnpredcl 4659
Description: The predecessor of a natural number is a natural number. This theorem is most interesting when the natural number is a successor (as seen in theorems like onsucuni2 4600) but also holds when it is  (/) by uni0 3866. (Contributed by Jim Kingdon, 31-Jul-2022.)
Assertion
Ref Expression
nnpredcl  |-  ( A  e.  om  ->  U. A  e.  om )

Proof of Theorem nnpredcl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 unieq 3848 . . . 4  |-  ( A  =  (/)  ->  U. A  =  U. (/) )
2 uni0 3866 . . . . 5  |-  U. (/)  =  (/)
3 peano1 4630 . . . . 5  |-  (/)  e.  om
42, 3eqeltri 2269 . . . 4  |-  U. (/)  e.  om
51, 4eqeltrdi 2287 . . 3  |-  ( A  =  (/)  ->  U. A  e.  om )
65adantl 277 . 2  |-  ( ( A  e.  om  /\  A  =  (/) )  ->  U. A  e.  om )
7 nnon 4646 . . . . . 6  |-  ( A  e.  om  ->  A  e.  On )
87adantr 276 . . . . 5  |-  ( ( A  e.  om  /\  E. x  e.  om  A  =  suc  x )  ->  A  e.  On )
9 simpr 110 . . . . 5  |-  ( ( A  e.  om  /\  E. x  e.  om  A  =  suc  x )  ->  E. x  e.  om  A  =  suc  x )
10 onsucuni2 4600 . . . . . . 7  |-  ( ( A  e.  On  /\  A  =  suc  x )  ->  suc  U. A  =  A )
1110ex 115 . . . . . 6  |-  ( A  e.  On  ->  ( A  =  suc  x  ->  suc  U. A  =  A ) )
1211rexlimdvw 2618 . . . . 5  |-  ( A  e.  On  ->  ( E. x  e.  om  A  =  suc  x  ->  suc  U. A  =  A ) )
138, 9, 12sylc 62 . . . 4  |-  ( ( A  e.  om  /\  E. x  e.  om  A  =  suc  x )  ->  suc  U. A  =  A )
14 simpl 109 . . . 4  |-  ( ( A  e.  om  /\  E. x  e.  om  A  =  suc  x )  ->  A  e.  om )
1513, 14eqeltrd 2273 . . 3  |-  ( ( A  e.  om  /\  E. x  e.  om  A  =  suc  x )  ->  suc  U. A  e.  om )
16 peano2b 4651 . . 3  |-  ( U. A  e.  om  <->  suc  U. A  e.  om )
1715, 16sylibr 134 . 2  |-  ( ( A  e.  om  /\  E. x  e.  om  A  =  suc  x )  ->  U. A  e.  om )
18 nn0suc 4640 . 2  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
196, 17, 18mpjaodan 799 1  |-  ( A  e.  om  ->  U. A  e.  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   E.wrex 2476   (/)c0 3450   U.cuni 3839   Oncon0 4398   suc csuc 4400   omcom 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627
This theorem is referenced by:  nnpredlt  4660  omp1eomlem  7160  ctmlemr  7174  nnnninfeq2  7195  nninfisollemne  7197  nninfisol  7199  nnsf  15649  peano4nninf  15650
  Copyright terms: Public domain W3C validator