ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsucpred Unicode version

Theorem nnsucpred 4594
Description: The successor of the precedessor of a nonzero natural number. (Contributed by Jim Kingdon, 31-Jul-2022.)
Assertion
Ref Expression
nnsucpred  |-  ( ( A  e.  om  /\  A  =/=  (/) )  ->  suc  U. A  =  A )

Proof of Theorem nnsucpred
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nnsuc 4593 . 2  |-  ( ( A  e.  om  /\  A  =/=  (/) )  ->  E. x  e.  om  A  =  suc  x )
2 nnon 4587 . . . 4  |-  ( A  e.  om  ->  A  e.  On )
32ad2antrr 480 . . 3  |-  ( ( ( A  e.  om  /\  A  =/=  (/) )  /\  ( x  e.  om  /\  A  =  suc  x
) )  ->  A  e.  On )
4 simprr 522 . . 3  |-  ( ( ( A  e.  om  /\  A  =/=  (/) )  /\  ( x  e.  om  /\  A  =  suc  x
) )  ->  A  =  suc  x )
5 onsucuni2 4541 . . 3  |-  ( ( A  e.  On  /\  A  =  suc  x )  ->  suc  U. A  =  A )
63, 4, 5syl2anc 409 . 2  |-  ( ( ( A  e.  om  /\  A  =/=  (/) )  /\  ( x  e.  om  /\  A  =  suc  x
) )  ->  suc  U. A  =  A )
71, 6rexlimddv 2588 1  |-  ( ( A  e.  om  /\  A  =/=  (/) )  ->  suc  U. A  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    =/= wne 2336   (/)c0 3409   U.cuni 3789   Oncon0 4341   suc csuc 4343   omcom 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-tr 4081  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568
This theorem is referenced by:  nnpredlt  4601  omp1eomlem  7059  nnnninfeq2  7093  nnsf  13885
  Copyright terms: Public domain W3C validator