ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsucpred Unicode version

Theorem nnsucpred 4525
Description: The successor of the precedessor of a nonzero natural number. (Contributed by Jim Kingdon, 31-Jul-2022.)
Assertion
Ref Expression
nnsucpred  |-  ( ( A  e.  om  /\  A  =/=  (/) )  ->  suc  U. A  =  A )

Proof of Theorem nnsucpred
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nnsuc 4524 . 2  |-  ( ( A  e.  om  /\  A  =/=  (/) )  ->  E. x  e.  om  A  =  suc  x )
2 nnon 4518 . . . 4  |-  ( A  e.  om  ->  A  e.  On )
32ad2antrr 479 . . 3  |-  ( ( ( A  e.  om  /\  A  =/=  (/) )  /\  ( x  e.  om  /\  A  =  suc  x
) )  ->  A  e.  On )
4 simprr 521 . . 3  |-  ( ( ( A  e.  om  /\  A  =/=  (/) )  /\  ( x  e.  om  /\  A  =  suc  x
) )  ->  A  =  suc  x )
5 onsucuni2 4474 . . 3  |-  ( ( A  e.  On  /\  A  =  suc  x )  ->  suc  U. A  =  A )
63, 4, 5syl2anc 408 . 2  |-  ( ( ( A  e.  om  /\  A  =/=  (/) )  /\  ( x  e.  om  /\  A  =  suc  x
) )  ->  suc  U. A  =  A )
71, 6rexlimddv 2552 1  |-  ( ( A  e.  om  /\  A  =/=  (/) )  ->  suc  U. A  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480    =/= wne 2306   (/)c0 3358   U.cuni 3731   Oncon0 4280   suc csuc 4282   omcom 4499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-uni 3732  df-int 3767  df-tr 4022  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500
This theorem is referenced by:  omp1eomlem  6972  nnsf  13188
  Copyright terms: Public domain W3C validator