| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnsucpred | Unicode version | ||
| Description: The successor of the precedessor of a nonzero natural number. (Contributed by Jim Kingdon, 31-Jul-2022.) |
| Ref | Expression |
|---|---|
| nnsucpred |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnsuc 4665 |
. 2
| |
| 2 | nnon 4659 |
. . . 4
| |
| 3 | 2 | ad2antrr 488 |
. . 3
|
| 4 | simprr 531 |
. . 3
| |
| 5 | onsucuni2 4613 |
. . 3
| |
| 6 | 3, 4, 5 | syl2anc 411 |
. 2
|
| 7 | 1, 6 | rexlimddv 2628 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-tr 4144 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 |
| This theorem is referenced by: nnpredlt 4673 omp1eomlem 7198 nnnninfeq2 7233 nnsf 15979 |
| Copyright terms: Public domain | W3C validator |