Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nnsucpred Unicode version

Theorem nnsucpred 12157
Description: The successor of the precedessor of a nonzero natural number. (Contributed by Jim Kingdon, 31-Jul-2022.)
Assertion
Ref Expression
nnsucpred  |-  ( ( A  e.  om  /\  A  =/=  (/) )  ->  suc  U. A  =  A )

Proof of Theorem nnsucpred
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nnsuc 4443 . 2  |-  ( ( A  e.  om  /\  A  =/=  (/) )  ->  E. x  e.  om  A  =  suc  x )
2 nnon 4437 . . . 4  |-  ( A  e.  om  ->  A  e.  On )
32ad2antrr 473 . . 3  |-  ( ( ( A  e.  om  /\  A  =/=  (/) )  /\  ( x  e.  om  /\  A  =  suc  x
) )  ->  A  e.  On )
4 simprr 500 . . 3  |-  ( ( ( A  e.  om  /\  A  =/=  (/) )  /\  ( x  e.  om  /\  A  =  suc  x
) )  ->  A  =  suc  x )
5 onsucuni2 4393 . . 3  |-  ( ( A  e.  On  /\  A  =  suc  x )  ->  suc  U. A  =  A )
63, 4, 5syl2anc 404 . 2  |-  ( ( ( A  e.  om  /\  A  =/=  (/) )  /\  ( x  e.  om  /\  A  =  suc  x
) )  ->  suc  U. A  =  A )
71, 6rexlimddv 2494 1  |-  ( ( A  e.  om  /\  A  =/=  (/) )  ->  suc  U. A  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290    e. wcel 1439    =/= wne 2256   (/)c0 3287   U.cuni 3659   Oncon0 4199   suc csuc 4201   omcom 4418
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-iinf 4416
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-v 2622  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-uni 3660  df-int 3695  df-tr 3943  df-iord 4202  df-on 4204  df-suc 4207  df-iom 4419
This theorem is referenced by:  nnsf  12161
  Copyright terms: Public domain W3C validator