ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsucpred Unicode version

Theorem nnsucpred 4649
Description: The successor of the precedessor of a nonzero natural number. (Contributed by Jim Kingdon, 31-Jul-2022.)
Assertion
Ref Expression
nnsucpred  |-  ( ( A  e.  om  /\  A  =/=  (/) )  ->  suc  U. A  =  A )

Proof of Theorem nnsucpred
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nnsuc 4648 . 2  |-  ( ( A  e.  om  /\  A  =/=  (/) )  ->  E. x  e.  om  A  =  suc  x )
2 nnon 4642 . . . 4  |-  ( A  e.  om  ->  A  e.  On )
32ad2antrr 488 . . 3  |-  ( ( ( A  e.  om  /\  A  =/=  (/) )  /\  ( x  e.  om  /\  A  =  suc  x
) )  ->  A  e.  On )
4 simprr 531 . . 3  |-  ( ( ( A  e.  om  /\  A  =/=  (/) )  /\  ( x  e.  om  /\  A  =  suc  x
) )  ->  A  =  suc  x )
5 onsucuni2 4596 . . 3  |-  ( ( A  e.  On  /\  A  =  suc  x )  ->  suc  U. A  =  A )
63, 4, 5syl2anc 411 . 2  |-  ( ( ( A  e.  om  /\  A  =/=  (/) )  /\  ( x  e.  om  /\  A  =  suc  x
) )  ->  suc  U. A  =  A )
71, 6rexlimddv 2616 1  |-  ( ( A  e.  om  /\  A  =/=  (/) )  ->  suc  U. A  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    =/= wne 2364   (/)c0 3446   U.cuni 3835   Oncon0 4394   suc csuc 4396   omcom 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623
This theorem is referenced by:  nnpredlt  4656  omp1eomlem  7153  nnnninfeq2  7188  nnsf  15495
  Copyright terms: Public domain W3C validator