| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnsssuc | GIF version | ||
| Description: A natural number is a subset of another natural number if and only if it belongs to its successor. (Contributed by Jim Kingdon, 22-Jul-2023.) |
| Ref | Expression |
|---|---|
| nnsssuc | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnsseleq 6559 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
| 2 | elsucg 4439 | . . 3 ⊢ (𝐴 ∈ ω → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
| 3 | 2 | adantr 276 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| 4 | 1, 3 | bitr4d 191 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 suc csuc 4400 ωcom 4626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 |
| This theorem is referenced by: nninfninc 7189 ctinfomlemom 12644 |
| Copyright terms: Public domain | W3C validator |