Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnsssuc | GIF version |
Description: A natural number is a subset of another natural number if and only if it belongs to its successor. (Contributed by Jim Kingdon, 22-Jul-2023.) |
Ref | Expression |
---|---|
nnsssuc | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnsseleq 6449 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
2 | elsucg 4365 | . . 3 ⊢ (𝐴 ∈ ω → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
3 | 2 | adantr 274 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
4 | 1, 3 | bitr4d 190 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 = wceq 1335 ∈ wcel 2128 ⊆ wss 3102 suc csuc 4326 ωcom 4550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4083 ax-nul 4091 ax-pow 4136 ax-pr 4170 ax-un 4394 ax-setind 4497 ax-iinf 4548 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-uni 3774 df-int 3809 df-tr 4064 df-iord 4327 df-on 4329 df-suc 4332 df-iom 4551 |
This theorem is referenced by: ctinfomlemom 12198 |
Copyright terms: Public domain | W3C validator |