ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsseleq Unicode version

Theorem nnsseleq 6559
Description: For natural numbers, inclusion is equivalent to membership or equality. (Contributed by Jim Kingdon, 16-Sep-2021.)
Assertion
Ref Expression
nnsseleq  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  ( A  e.  B  \/  A  =  B )
) )

Proof of Theorem nnsseleq
StepHypRef Expression
1 nntri1 6554 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
2 nntri3or 6551 . . . . . 6  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
3 df-3or 981 . . . . . 6  |-  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  <->  ( ( A  e.  B  \/  A  =  B
)  \/  B  e.  A ) )
42, 3sylib 122 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  e.  B  \/  A  =  B )  \/  B  e.  A ) )
54orcomd 730 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( B  e.  A  \/  ( A  e.  B  \/  A  =  B
) ) )
65ord 725 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( -.  B  e.  A  ->  ( A  e.  B  \/  A  =  B ) ) )
71, 6sylbid 150 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  ->  ( A  e.  B  \/  A  =  B
) ) )
8 nnord 4648 . . . . 5  |-  ( B  e.  om  ->  Ord  B )
98adantl 277 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  Ord  B )
10 ordelss 4414 . . . . 5  |-  ( ( Ord  B  /\  A  e.  B )  ->  A  C_  B )
1110ex 115 . . . 4  |-  ( Ord 
B  ->  ( A  e.  B  ->  A  C_  B ) )
129, 11syl 14 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  A  C_  B )
)
13 eqimss 3237 . . . 4  |-  ( A  =  B  ->  A  C_  B )
1413a1i 9 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  =  B  ->  A  C_  B
) )
1512, 14jaod 718 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  e.  B  \/  A  =  B )  ->  A  C_  B ) )
167, 15impbid 129 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  ( A  e.  B  \/  A  =  B )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    \/ w3o 979    = wceq 1364    e. wcel 2167    C_ wss 3157   Ord word 4397   omcom 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627
This theorem is referenced by:  nnsssuc  6560  frec2uzled  10521
  Copyright terms: Public domain W3C validator