Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnsseleq | Unicode version |
Description: For natural numbers, inclusion is equivalent to membership or equality. (Contributed by Jim Kingdon, 16-Sep-2021.) |
Ref | Expression |
---|---|
nnsseleq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nntri1 6487 | . . 3 | |
2 | nntri3or 6484 | . . . . . 6 | |
3 | df-3or 979 | . . . . . 6 | |
4 | 2, 3 | sylib 122 | . . . . 5 |
5 | 4 | orcomd 729 | . . . 4 |
6 | 5 | ord 724 | . . 3 |
7 | 1, 6 | sylbid 150 | . 2 |
8 | nnord 4605 | . . . . 5 | |
9 | 8 | adantl 277 | . . . 4 |
10 | ordelss 4373 | . . . . 5 | |
11 | 10 | ex 115 | . . . 4 |
12 | 9, 11 | syl 14 | . . 3 |
13 | eqimss 3207 | . . . 4 | |
14 | 13 | a1i 9 | . . 3 |
15 | 12, 14 | jaod 717 | . 2 |
16 | 7, 15 | impbid 129 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wb 105 wo 708 w3o 977 wceq 1353 wcel 2146 wss 3127 word 4356 com 4583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-uni 3806 df-int 3841 df-tr 4097 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 |
This theorem is referenced by: nnsssuc 6493 frec2uzled 10397 |
Copyright terms: Public domain | W3C validator |