Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnsseleq | Unicode version |
Description: For natural numbers, inclusion is equivalent to membership or equality. (Contributed by Jim Kingdon, 16-Sep-2021.) |
Ref | Expression |
---|---|
nnsseleq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nntri1 6464 | . . 3 | |
2 | nntri3or 6461 | . . . . . 6 | |
3 | df-3or 969 | . . . . . 6 | |
4 | 2, 3 | sylib 121 | . . . . 5 |
5 | 4 | orcomd 719 | . . . 4 |
6 | 5 | ord 714 | . . 3 |
7 | 1, 6 | sylbid 149 | . 2 |
8 | nnord 4589 | . . . . 5 | |
9 | 8 | adantl 275 | . . . 4 |
10 | ordelss 4357 | . . . . 5 | |
11 | 10 | ex 114 | . . . 4 |
12 | 9, 11 | syl 14 | . . 3 |
13 | eqimss 3196 | . . . 4 | |
14 | 13 | a1i 9 | . . 3 |
15 | 12, 14 | jaod 707 | . 2 |
16 | 7, 15 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3o 967 wceq 1343 wcel 2136 wss 3116 word 4340 com 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 |
This theorem is referenced by: nnsssuc 6470 frec2uzled 10364 |
Copyright terms: Public domain | W3C validator |