ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  map0g Unicode version

Theorem map0g 6690
Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
map0g  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  ^m  B )  =  (/)  <->  ( A  =  (/)  /\  B  =/=  (/) ) ) )

Proof of Theorem map0g
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fconst6g 5416 . . . . . . . 8  |-  ( f  e.  A  ->  ( B  X.  { f } ) : B --> A )
2 elmapg 6663 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( B  X.  { f } )  e.  ( A  ^m  B )  <->  ( B  X.  { f } ) : B --> A ) )
31, 2imbitrrid 156 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( f  e.  A  ->  ( B  X.  {
f } )  e.  ( A  ^m  B
) ) )
4 ne0i 3431 . . . . . . 7  |-  ( ( B  X.  { f } )  e.  ( A  ^m  B )  ->  ( A  ^m  B )  =/=  (/) )
53, 4syl6 33 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( f  e.  A  ->  ( A  ^m  B
)  =/=  (/) ) )
65exlimdv 1819 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. f  f  e.  A  ->  ( A  ^m  B )  =/=  (/) ) )
76necon2bd 2405 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  ^m  B )  =  (/)  ->  -.  E. f  f  e.  A ) )
8 notm0 3445 . . . 4  |-  ( -. 
E. f  f  e.  A  <->  A  =  (/) )
97, 8imbitrdi 161 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  ^m  B )  =  (/)  ->  A  =  (/) ) )
10 f0 5408 . . . . . . 7  |-  (/) : (/) --> A
11 feq2 5351 . . . . . . 7  |-  ( B  =  (/)  ->  ( (/) : B --> A  <->  (/) : (/) --> A ) )
1210, 11mpbiri 168 . . . . . 6  |-  ( B  =  (/)  ->  (/) : B --> A )
13 elmapg 6663 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (/)  e.  ( A  ^m  B )  <->  (/) : B --> A ) )
1412, 13imbitrrid 156 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( B  =  (/)  -> 
(/)  e.  ( A  ^m  B ) ) )
15 ne0i 3431 . . . . 5  |-  ( (/)  e.  ( A  ^m  B
)  ->  ( A  ^m  B )  =/=  (/) )
1614, 15syl6 33 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( B  =  (/)  ->  ( A  ^m  B
)  =/=  (/) ) )
1716necon2d 2406 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  ^m  B )  =  (/)  ->  B  =/=  (/) ) )
189, 17jcad 307 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  ^m  B )  =  (/)  ->  ( A  =  (/)  /\  B  =/=  (/) ) ) )
19 oveq1 5884 . . 3  |-  ( A  =  (/)  ->  ( A  ^m  B )  =  ( (/)  ^m  B ) )
20 map0b 6689 . . 3  |-  ( B  =/=  (/)  ->  ( (/)  ^m  B
)  =  (/) )
2119, 20sylan9eq 2230 . 2  |-  ( ( A  =  (/)  /\  B  =/=  (/) )  ->  ( A  ^m  B )  =  (/) )
2218, 21impbid1 142 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  ^m  B )  =  (/)  <->  ( A  =  (/)  /\  B  =/=  (/) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148    =/= wne 2347   (/)c0 3424   {csn 3594    X. cxp 4626   -->wf 5214  (class class class)co 5877    ^m cmap 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-map 6652
This theorem is referenced by:  map0  6691
  Copyright terms: Public domain W3C validator