ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  map0g Unicode version

Theorem map0g 6775
Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
map0g  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  ^m  B )  =  (/)  <->  ( A  =  (/)  /\  B  =/=  (/) ) ) )

Proof of Theorem map0g
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fconst6g 5474 . . . . . . . 8  |-  ( f  e.  A  ->  ( B  X.  { f } ) : B --> A )
2 elmapg 6748 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( B  X.  { f } )  e.  ( A  ^m  B )  <->  ( B  X.  { f } ) : B --> A ) )
31, 2imbitrrid 156 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( f  e.  A  ->  ( B  X.  {
f } )  e.  ( A  ^m  B
) ) )
4 ne0i 3467 . . . . . . 7  |-  ( ( B  X.  { f } )  e.  ( A  ^m  B )  ->  ( A  ^m  B )  =/=  (/) )
53, 4syl6 33 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( f  e.  A  ->  ( A  ^m  B
)  =/=  (/) ) )
65exlimdv 1842 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. f  f  e.  A  ->  ( A  ^m  B )  =/=  (/) ) )
76necon2bd 2434 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  ^m  B )  =  (/)  ->  -.  E. f  f  e.  A ) )
8 notm0 3481 . . . 4  |-  ( -. 
E. f  f  e.  A  <->  A  =  (/) )
97, 8imbitrdi 161 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  ^m  B )  =  (/)  ->  A  =  (/) ) )
10 f0 5466 . . . . . . 7  |-  (/) : (/) --> A
11 feq2 5409 . . . . . . 7  |-  ( B  =  (/)  ->  ( (/) : B --> A  <->  (/) : (/) --> A ) )
1210, 11mpbiri 168 . . . . . 6  |-  ( B  =  (/)  ->  (/) : B --> A )
13 elmapg 6748 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (/)  e.  ( A  ^m  B )  <->  (/) : B --> A ) )
1412, 13imbitrrid 156 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( B  =  (/)  -> 
(/)  e.  ( A  ^m  B ) ) )
15 ne0i 3467 . . . . 5  |-  ( (/)  e.  ( A  ^m  B
)  ->  ( A  ^m  B )  =/=  (/) )
1614, 15syl6 33 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( B  =  (/)  ->  ( A  ^m  B
)  =/=  (/) ) )
1716necon2d 2435 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  ^m  B )  =  (/)  ->  B  =/=  (/) ) )
189, 17jcad 307 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  ^m  B )  =  (/)  ->  ( A  =  (/)  /\  B  =/=  (/) ) ) )
19 oveq1 5951 . . 3  |-  ( A  =  (/)  ->  ( A  ^m  B )  =  ( (/)  ^m  B ) )
20 map0b 6774 . . 3  |-  ( B  =/=  (/)  ->  ( (/)  ^m  B
)  =  (/) )
2119, 20sylan9eq 2258 . 2  |-  ( ( A  =  (/)  /\  B  =/=  (/) )  ->  ( A  ^m  B )  =  (/) )
2218, 21impbid1 142 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  ^m  B )  =  (/)  <->  ( A  =  (/)  /\  B  =/=  (/) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176    =/= wne 2376   (/)c0 3460   {csn 3633    X. cxp 4673   -->wf 5267  (class class class)co 5944    ^m cmap 6735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-map 6737
This theorem is referenced by:  map0  6776
  Copyright terms: Public domain W3C validator