ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  map0g Unicode version

Theorem map0g 6666
Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
map0g  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  ^m  B )  =  (/)  <->  ( A  =  (/)  /\  B  =/=  (/) ) ) )

Proof of Theorem map0g
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fconst6g 5396 . . . . . . . 8  |-  ( f  e.  A  ->  ( B  X.  { f } ) : B --> A )
2 elmapg 6639 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( B  X.  { f } )  e.  ( A  ^m  B )  <->  ( B  X.  { f } ) : B --> A ) )
31, 2syl5ibr 155 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( f  e.  A  ->  ( B  X.  {
f } )  e.  ( A  ^m  B
) ) )
4 ne0i 3421 . . . . . . 7  |-  ( ( B  X.  { f } )  e.  ( A  ^m  B )  ->  ( A  ^m  B )  =/=  (/) )
53, 4syl6 33 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( f  e.  A  ->  ( A  ^m  B
)  =/=  (/) ) )
65exlimdv 1812 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. f  f  e.  A  ->  ( A  ^m  B )  =/=  (/) ) )
76necon2bd 2398 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  ^m  B )  =  (/)  ->  -.  E. f  f  e.  A ) )
8 notm0 3435 . . . 4  |-  ( -. 
E. f  f  e.  A  <->  A  =  (/) )
97, 8syl6ib 160 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  ^m  B )  =  (/)  ->  A  =  (/) ) )
10 f0 5388 . . . . . . 7  |-  (/) : (/) --> A
11 feq2 5331 . . . . . . 7  |-  ( B  =  (/)  ->  ( (/) : B --> A  <->  (/) : (/) --> A ) )
1210, 11mpbiri 167 . . . . . 6  |-  ( B  =  (/)  ->  (/) : B --> A )
13 elmapg 6639 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( (/)  e.  ( A  ^m  B )  <->  (/) : B --> A ) )
1412, 13syl5ibr 155 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( B  =  (/)  -> 
(/)  e.  ( A  ^m  B ) ) )
15 ne0i 3421 . . . . 5  |-  ( (/)  e.  ( A  ^m  B
)  ->  ( A  ^m  B )  =/=  (/) )
1614, 15syl6 33 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( B  =  (/)  ->  ( A  ^m  B
)  =/=  (/) ) )
1716necon2d 2399 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  ^m  B )  =  (/)  ->  B  =/=  (/) ) )
189, 17jcad 305 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  ^m  B )  =  (/)  ->  ( A  =  (/)  /\  B  =/=  (/) ) ) )
19 oveq1 5860 . . 3  |-  ( A  =  (/)  ->  ( A  ^m  B )  =  ( (/)  ^m  B ) )
20 map0b 6665 . . 3  |-  ( B  =/=  (/)  ->  ( (/)  ^m  B
)  =  (/) )
2119, 20sylan9eq 2223 . 2  |-  ( ( A  =  (/)  /\  B  =/=  (/) )  ->  ( A  ^m  B )  =  (/) )
2218, 21impbid1 141 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( A  ^m  B )  =  (/)  <->  ( A  =  (/)  /\  B  =/=  (/) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141    =/= wne 2340   (/)c0 3414   {csn 3583    X. cxp 4609   -->wf 5194  (class class class)co 5853    ^m cmap 6626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-map 6628
This theorem is referenced by:  map0  6667
  Copyright terms: Public domain W3C validator