ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofeqd Unicode version

Theorem ofeqd 6160
Description: Equality theorem for function operation, deduction form. (Contributed by SN, 11-Nov-2024.)
Hypothesis
Ref Expression
ofeqd.1  |-  ( ph  ->  R  =  S )
Assertion
Ref Expression
ofeqd  |-  ( ph  ->  oF R  =  oF S )

Proof of Theorem ofeqd
Dummy variables  f  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ofeqd.1 . . . . 5  |-  ( ph  ->  R  =  S )
21oveqd 5961 . . . 4  |-  ( ph  ->  ( ( f `  x ) R ( g `  x ) )  =  ( ( f `  x ) S ( g `  x ) ) )
32mpteq2dv 4135 . . 3  |-  ( ph  ->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x ) R ( g `  x ) ) )  =  ( x  e.  ( dom  f  i^i 
dom  g )  |->  ( ( f `  x
) S ( g `
 x ) ) ) )
43mpoeq3dv 6011 . 2  |-  ( ph  ->  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )  =  ( f  e. 
_V ,  g  e. 
_V  |->  ( x  e.  ( dom  f  i^i 
dom  g )  |->  ( ( f `  x
) S ( g `
 x ) ) ) ) )
5 df-of 6158 . 2  |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) ) )
6 df-of 6158 . 2  |-  oF S  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) S ( g `
 x ) ) ) )
74, 5, 63eqtr4g 2263 1  |-  ( ph  ->  oF R  =  oF S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   _Vcvv 2772    i^i cin 3165    |-> cmpt 4105   dom cdm 4675   ` cfv 5271  (class class class)co 5944    e. cmpo 5946    oFcof 6156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-iota 5232  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-of 6158
This theorem is referenced by:  psrval  14428  lgseisenlem3  15549  lgseisenlem4  15550
  Copyright terms: Public domain W3C validator