ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofeqd Unicode version

Theorem ofeqd 6109
Description: Equality theorem for function operation, deduction form. (Contributed by SN, 11-Nov-2024.)
Hypothesis
Ref Expression
ofeqd.1  |-  ( ph  ->  R  =  S )
Assertion
Ref Expression
ofeqd  |-  ( ph  ->  oF R  =  oF S )

Proof of Theorem ofeqd
Dummy variables  f  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ofeqd.1 . . . . 5  |-  ( ph  ->  R  =  S )
21oveqd 5914 . . . 4  |-  ( ph  ->  ( ( f `  x ) R ( g `  x ) )  =  ( ( f `  x ) S ( g `  x ) ) )
32mpteq2dv 4109 . . 3  |-  ( ph  ->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x ) R ( g `  x ) ) )  =  ( x  e.  ( dom  f  i^i 
dom  g )  |->  ( ( f `  x
) S ( g `
 x ) ) ) )
43mpoeq3dv 5963 . 2  |-  ( ph  ->  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )  =  ( f  e. 
_V ,  g  e. 
_V  |->  ( x  e.  ( dom  f  i^i 
dom  g )  |->  ( ( f `  x
) S ( g `
 x ) ) ) ) )
5 df-of 6107 . 2  |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) ) )
6 df-of 6107 . 2  |-  oF S  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) S ( g `
 x ) ) ) )
74, 5, 63eqtr4g 2247 1  |-  ( ph  ->  oF R  =  oF S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   _Vcvv 2752    i^i cin 3143    |-> cmpt 4079   dom cdm 4644   ` cfv 5235  (class class class)co 5897    e. cmpo 5899    oFcof 6105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-iota 5196  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-of 6107
This theorem is referenced by:  psrval  13961
  Copyright terms: Public domain W3C validator