| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ofeqd | Unicode version | ||
| Description: Equality theorem for function operation, deduction form. (Contributed by SN, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| ofeqd.1 |
|
| Ref | Expression |
|---|---|
| ofeqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofeqd.1 |
. . . . 5
| |
| 2 | 1 | oveqd 5939 |
. . . 4
|
| 3 | 2 | mpteq2dv 4124 |
. . 3
|
| 4 | 3 | mpoeq3dv 5988 |
. 2
|
| 5 | df-of 6135 |
. 2
| |
| 6 | df-of 6135 |
. 2
| |
| 7 | 4, 5, 6 | 3eqtr4g 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-iota 5219 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 |
| This theorem is referenced by: psrval 14220 lgseisenlem3 15313 lgseisenlem4 15314 |
| Copyright terms: Public domain | W3C validator |