ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofeqd Unicode version

Theorem ofeqd 6183
Description: Equality theorem for function operation, deduction form. (Contributed by SN, 11-Nov-2024.)
Hypothesis
Ref Expression
ofeqd.1  |-  ( ph  ->  R  =  S )
Assertion
Ref Expression
ofeqd  |-  ( ph  ->  oF R  =  oF S )

Proof of Theorem ofeqd
Dummy variables  f  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ofeqd.1 . . . . 5  |-  ( ph  ->  R  =  S )
21oveqd 5984 . . . 4  |-  ( ph  ->  ( ( f `  x ) R ( g `  x ) )  =  ( ( f `  x ) S ( g `  x ) ) )
32mpteq2dv 4151 . . 3  |-  ( ph  ->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x ) R ( g `  x ) ) )  =  ( x  e.  ( dom  f  i^i 
dom  g )  |->  ( ( f `  x
) S ( g `
 x ) ) ) )
43mpoeq3dv 6034 . 2  |-  ( ph  ->  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )  =  ( f  e. 
_V ,  g  e. 
_V  |->  ( x  e.  ( dom  f  i^i 
dom  g )  |->  ( ( f `  x
) S ( g `
 x ) ) ) ) )
5 df-of 6181 . 2  |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) ) )
6 df-of 6181 . 2  |-  oF S  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) S ( g `
 x ) ) ) )
74, 5, 63eqtr4g 2265 1  |-  ( ph  ->  oF R  =  oF S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   _Vcvv 2776    i^i cin 3173    |-> cmpt 4121   dom cdm 4693   ` cfv 5290  (class class class)co 5967    e. cmpo 5969    oFcof 6179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-iota 5251  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-of 6181
This theorem is referenced by:  psrval  14543  lgseisenlem3  15664  lgseisenlem4  15665
  Copyright terms: Public domain W3C validator