ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofeqd Unicode version

Theorem ofeqd 6220
Description: Equality theorem for function operation, deduction form. (Contributed by SN, 11-Nov-2024.)
Hypothesis
Ref Expression
ofeqd.1  |-  ( ph  ->  R  =  S )
Assertion
Ref Expression
ofeqd  |-  ( ph  ->  oF R  =  oF S )

Proof of Theorem ofeqd
Dummy variables  f  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ofeqd.1 . . . . 5  |-  ( ph  ->  R  =  S )
21oveqd 6018 . . . 4  |-  ( ph  ->  ( ( f `  x ) R ( g `  x ) )  =  ( ( f `  x ) S ( g `  x ) ) )
32mpteq2dv 4175 . . 3  |-  ( ph  ->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x ) R ( g `  x ) ) )  =  ( x  e.  ( dom  f  i^i 
dom  g )  |->  ( ( f `  x
) S ( g `
 x ) ) ) )
43mpoeq3dv 6070 . 2  |-  ( ph  ->  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )  =  ( f  e. 
_V ,  g  e. 
_V  |->  ( x  e.  ( dom  f  i^i 
dom  g )  |->  ( ( f `  x
) S ( g `
 x ) ) ) ) )
5 df-of 6218 . 2  |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) ) )
6 df-of 6218 . 2  |-  oF S  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) S ( g `
 x ) ) ) )
74, 5, 63eqtr4g 2287 1  |-  ( ph  ->  oF R  =  oF S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   _Vcvv 2799    i^i cin 3196    |-> cmpt 4145   dom cdm 4719   ` cfv 5318  (class class class)co 6001    e. cmpo 6003    oFcof 6216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-iota 5278  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-of 6218
This theorem is referenced by:  psrval  14630  lgseisenlem3  15751  lgseisenlem4  15752
  Copyright terms: Public domain W3C validator