ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofeqd Unicode version

Theorem ofeqd 6137
Description: Equality theorem for function operation, deduction form. (Contributed by SN, 11-Nov-2024.)
Hypothesis
Ref Expression
ofeqd.1  |-  ( ph  ->  R  =  S )
Assertion
Ref Expression
ofeqd  |-  ( ph  ->  oF R  =  oF S )

Proof of Theorem ofeqd
Dummy variables  f  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ofeqd.1 . . . . 5  |-  ( ph  ->  R  =  S )
21oveqd 5939 . . . 4  |-  ( ph  ->  ( ( f `  x ) R ( g `  x ) )  =  ( ( f `  x ) S ( g `  x ) ) )
32mpteq2dv 4124 . . 3  |-  ( ph  ->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x ) R ( g `  x ) ) )  =  ( x  e.  ( dom  f  i^i 
dom  g )  |->  ( ( f `  x
) S ( g `
 x ) ) ) )
43mpoeq3dv 5988 . 2  |-  ( ph  ->  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )  =  ( f  e. 
_V ,  g  e. 
_V  |->  ( x  e.  ( dom  f  i^i 
dom  g )  |->  ( ( f `  x
) S ( g `
 x ) ) ) ) )
5 df-of 6135 . 2  |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) ) )
6 df-of 6135 . 2  |-  oF S  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) S ( g `
 x ) ) ) )
74, 5, 63eqtr4g 2254 1  |-  ( ph  ->  oF R  =  oF S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   _Vcvv 2763    i^i cin 3156    |-> cmpt 4094   dom cdm 4663   ` cfv 5258  (class class class)co 5922    e. cmpo 5924    oFcof 6133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-iota 5219  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135
This theorem is referenced by:  psrval  14220  lgseisenlem3  15313  lgseisenlem4  15314
  Copyright terms: Public domain W3C validator