ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrval Unicode version

Theorem psrval 14503
Description: Value of the multivariate power series structure. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrval.s  |-  S  =  ( I mPwSer  R )
psrval.k  |-  K  =  ( Base `  R
)
psrval.a  |-  .+  =  ( +g  `  R )
psrval.m  |-  .x.  =  ( .r `  R )
psrval.o  |-  O  =  ( TopOpen `  R )
psrval.d  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
psrval.b  |-  ( ph  ->  B  =  ( K  ^m  D ) )
psrval.p  |-  .+b  =  (  oF  .+  |`  ( B  X.  B ) )
psrval.t  |-  .X.  =  ( f  e.  B ,  g  e.  B  |->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( f `  x ) 
.x.  ( g `  ( k  oF  -  x ) ) ) ) ) ) )
psrval.v  |-  .xb  =  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  oF  .x.  f
) )
psrval.j  |-  ( ph  ->  J  =  ( Xt_ `  ( D  X.  { O } ) ) )
psrval.i  |-  ( ph  ->  I  e.  W )
psrval.r  |-  ( ph  ->  R  e.  X )
Assertion
Ref Expression
psrval  |-  ( ph  ->  S  =  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
Distinct variable groups:    y, h    f,
g, k, x, ph    B, f, g, k, x   
f, h, I, g, k, x    R, f, g, k, x    y,
f, D, g, k, x    f, K, x
Allowed substitution hints:    ph( y, h)    B( y, h)    D( h)    .+ ( x, y, f, g, h, k)    .+b (
x, y, f, g, h, k)    R( y, h)    S( x, y, f, g, h, k)    .xb ( x, y, f, g, h, k)    .x. ( x, y, f, g, h, k)    .X. ( x, y, f, g, h, k)    I( y)    J( x, y, f, g, h, k)    K( y, g, h, k)    O( x, y, f, g, h, k)    W( x, y, f, g, h, k)    X( x, y, f, g, h, k)

Proof of Theorem psrval
Dummy variables  i  r  b  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrval.s . 2  |-  S  =  ( I mPwSer  R )
2 df-psr 14500 . . . 4  |- mPwSer  =  ( i  e.  _V , 
r  e.  _V  |->  [_ { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]_ [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) )
32a1i 9 . . 3  |-  ( ph  -> mPwSer 
=  ( i  e. 
_V ,  r  e. 
_V  |->  [_ { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  / 
d ]_ [_ ( (
Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) ) )
4 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  -> 
i  =  I )
54oveq2d 5973 . . . . . . 7  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  -> 
( NN0  ^m  i
)  =  ( NN0 
^m  I ) )
65rabeqdv 2767 . . . . . 6  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  ->  { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  =  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin } )
7 psrval.d . . . . . 6  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
86, 7eqtr4di 2257 . . . . 5  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  ->  { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  =  D )
98csbeq1d 3104 . . . 4  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  ->  [_ { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]_ [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  =  [_ D  /  d ]_ [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) )
10 nn0ex 9321 . . . . . . . . 9  |-  NN0  e.  _V
11 vex 2776 . . . . . . . . 9  |-  i  e. 
_V
1210, 11mapval 6760 . . . . . . . 8  |-  ( NN0 
^m  i )  =  { f  |  f : i --> NN0 }
13 mapex 6754 . . . . . . . . 9  |-  ( ( i  e.  _V  /\  NN0 
e.  _V )  ->  { f  |  f : i --> NN0 }  e.  _V )
1411, 10, 13mp2an 426 . . . . . . . 8  |-  { f  |  f : i --> NN0 }  e.  _V
1512, 14eqeltri 2279 . . . . . . 7  |-  ( NN0 
^m  i )  e. 
_V
1615rabex 4196 . . . . . 6  |-  { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  e.  _V
178, 16eqeltrrdi 2298 . . . . 5  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  ->  D  e.  _V )
18 simplrr 536 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  r  =  R )
1918fveq2d 5593 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  ( Base `  r )  =  ( Base `  R
) )
20 psrval.k . . . . . . . . . 10  |-  K  =  ( Base `  R
)
2119, 20eqtr4di 2257 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  ( Base `  r )  =  K )
22 simpr 110 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  d  =  D )
2321, 22oveq12d 5975 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  (
( Base `  r )  ^m  d )  =  ( K  ^m  D ) )
24 psrval.b . . . . . . . . 9  |-  ( ph  ->  B  =  ( K  ^m  D ) )
2524ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  B  =  ( K  ^m  D ) )
2623, 25eqtr4d 2242 . . . . . . 7  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  (
( Base `  r )  ^m  d )  =  B )
2726csbeq1d 3104 . . . . . 6  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  =  [_ B  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  (  oF ( +g  `  r
)  |`  ( b  X.  b ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r 
gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `
 x ) ( .r `  r ) ( g `  (
k  oF  -  x ) ) ) ) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) )
28 basfn 12965 . . . . . . . . . . 11  |-  Base  Fn  _V
29 vex 2776 . . . . . . . . . . 11  |-  r  e. 
_V
30 funfvex 5606 . . . . . . . . . . . 12  |-  ( ( Fun  Base  /\  r  e.  dom  Base )  ->  ( Base `  r )  e. 
_V )
3130funfni 5385 . . . . . . . . . . 11  |-  ( (
Base  Fn  _V  /\  r  e.  _V )  ->  ( Base `  r )  e. 
_V )
3228, 29, 31mp2an 426 . . . . . . . . . 10  |-  ( Base `  r )  e.  _V
33 vex 2776 . . . . . . . . . 10  |-  d  e. 
_V
3432, 33mapval 6760 . . . . . . . . 9  |-  ( (
Base `  r )  ^m  d )  =  {
f  |  f : d --> ( Base `  r
) }
35 mapex 6754 . . . . . . . . . 10  |-  ( ( d  e.  _V  /\  ( Base `  r )  e.  _V )  ->  { f  |  f : d --> ( Base `  r
) }  e.  _V )
3633, 32, 35mp2an 426 . . . . . . . . 9  |-  { f  |  f : d --> ( Base `  r
) }  e.  _V
3734, 36eqeltri 2279 . . . . . . . 8  |-  ( (
Base `  r )  ^m  d )  e.  _V
3826, 37eqeltrrdi 2298 . . . . . . 7  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  B  e.  _V )
39 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  b  =  B )
4039opeq2d 3832 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  <. ( Base `  ndx ) ,  b >.  =  <. (
Base `  ndx ) ,  B >. )
4118adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  r  =  R )
4241fveq2d 5593 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( +g  `  r )  =  ( +g  `  R
) )
43 psrval.a . . . . . . . . . . . . . 14  |-  .+  =  ( +g  `  R )
4442, 43eqtr4di 2257 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( +g  `  r )  = 
.+  )
4544ofeqd 6173 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  oF ( +g  `  r
)  =  oF  .+  )
4639, 39xpeq12d 4708 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
b  X.  b )  =  ( B  X.  B ) )
4745, 46reseq12d 4969 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (  oF ( +g  `  r )  |`  (
b  X.  b ) )  =  (  oF  .+  |`  ( B  X.  B ) ) )
48 psrval.p . . . . . . . . . . 11  |-  .+b  =  (  oF  .+  |`  ( B  X.  B ) )
4947, 48eqtr4di 2257 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (  oF ( +g  `  r )  |`  (
b  X.  b ) )  =  .+b  )
5049opeq2d 3832 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >.  =  <. ( +g  `  ndx ) ,  .+b  >. )
5122adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  d  =  D )
5251rabeqdv 2767 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  { y  e.  d  |  y  oR  <_  k }  =  { y  e.  D  |  y  oR  <_  k } )
5341fveq2d 5593 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( .r `  r )  =  ( .r `  R
) )
54 psrval.m . . . . . . . . . . . . . . . . 17  |-  .x.  =  ( .r `  R )
5553, 54eqtr4di 2257 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( .r `  r )  = 
.x.  )
5655oveqd 5974 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
( f `  x
) ( .r `  r ) ( g `
 ( k  oF  -  x ) ) )  =  ( ( f `  x
)  .x.  ( g `  ( k  oF  -  x ) ) ) )
5752, 56mpteq12dv 4134 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `
 x ) ( .r `  r ) ( g `  (
k  oF  -  x ) ) ) )  =  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( f `  x )  .x.  (
g `  ( k  oF  -  x
) ) ) ) )
5841, 57oveq12d 5975 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
r  gsumg  ( x  e.  {
y  e.  d  |  y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  r
) ( g `  ( k  oF  -  x ) ) ) ) )  =  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( f `  x ) 
.x.  ( g `  ( k  oF  -  x ) ) ) ) ) )
5951, 58mpteq12dv 4134 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
k  e.  d  |->  ( r  gsumg  ( x  e.  {
y  e.  d  |  y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  r
) ( g `  ( k  oF  -  x ) ) ) ) ) )  =  ( k  e.  D  |->  ( R  gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( f `  x )  .x.  (
g `  ( k  oF  -  x
) ) ) ) ) ) )
6039, 39, 59mpoeq123dv 6020 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  {
y  e.  d  |  y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  r
) ( g `  ( k  oF  -  x ) ) ) ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( k  e.  D  |->  ( R 
gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( f `
 x )  .x.  ( g `  (
k  oF  -  x ) ) ) ) ) ) ) )
61 psrval.t . . . . . . . . . . 11  |-  .X.  =  ( f  e.  B ,  g  e.  B  |->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( f `  x ) 
.x.  ( g `  ( k  oF  -  x ) ) ) ) ) ) )
6260, 61eqtr4di 2257 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  {
y  e.  d  |  y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  r
) ( g `  ( k  oF  -  x ) ) ) ) ) ) )  =  .X.  )
6362opeq2d 3832 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b 
|->  ( k  e.  d 
|->  ( r  gsumg  ( x  e.  {
y  e.  d  |  y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  r
) ( g `  ( k  oF  -  x ) ) ) ) ) ) ) >.  =  <. ( .r `  ndx ) ,  .X.  >. )
6440, 50, 63tpeq123d 3730 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  { <. (
Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  =  { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. ( .r `  ndx ) , 
.X.  >. } )
6541opeq2d 3832 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  <. (Scalar ` 
ndx ) ,  r
>.  =  <. (Scalar `  ndx ) ,  R >. )
6621adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( Base `  r )  =  K )
6755ofeqd 6173 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  oF ( .r `  r )  =  oF  .x.  )
6851xpeq1d 4706 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
d  X.  { x } )  =  ( D  X.  { x } ) )
69 eqidd 2207 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  f  =  f )
7067, 68, 69oveq123d 5978 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
( d  X.  {
x } )  oF ( .r `  r ) f )  =  ( ( D  X.  { x }
)  oF  .x.  f ) )
7166, 39, 70mpoeq123dv 6020 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )  =  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x }
)  oF  .x.  f ) ) )
72 psrval.v . . . . . . . . . . 11  |-  .xb  =  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  oF  .x.  f
) )
7371, 72eqtr4di 2257 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )  =  .xb  )
7473opeq2d 3832 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  r ) ,  f  e.  b  |->  ( ( d  X. 
{ x } )  oF ( .r
`  r ) f ) ) >.  =  <. ( .s `  ndx ) ,  .xb  >. )
7541fveq2d 5593 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( TopOpen
`  r )  =  ( TopOpen `  R )
)
76 psrval.o . . . . . . . . . . . . . . 15  |-  O  =  ( TopOpen `  R )
7775, 76eqtr4di 2257 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( TopOpen
`  r )  =  O )
7877sneqd 3651 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  { (
TopOpen `  r ) }  =  { O }
)
7951, 78xpeq12d 4708 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
d  X.  { (
TopOpen `  r ) } )  =  ( D  X.  { O }
) )
8079fveq2d 5593 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( Xt_ `  ( d  X. 
{ ( TopOpen `  r
) } ) )  =  ( Xt_ `  ( D  X.  { O }
) ) )
81 psrval.j . . . . . . . . . . . 12  |-  ( ph  ->  J  =  ( Xt_ `  ( D  X.  { O } ) ) )
8281ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  J  =  ( Xt_ `  ( D  X.  { O }
) ) )
8380, 82eqtr4d 2242 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( Xt_ `  ( d  X. 
{ ( TopOpen `  r
) } ) )  =  J )
8483opeq2d 3832 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( d  X.  { ( TopOpen `  r
) } ) )
>.  =  <. (TopSet `  ndx ) ,  J >. )
8565, 74, 84tpeq123d 3730 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  { <. (Scalar `  ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. }  =  { <. (Scalar ` 
ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  .xb  >. ,  <. (TopSet `  ndx ) ,  J >. } )
8664, 85uneq12d 3332 . . . . . . 7  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  (  oF ( +g  `  r
)  |`  ( b  X.  b ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r 
gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `
 x ) ( .r `  r ) ( g `  (
k  oF  -  x ) ) ) ) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
8738, 86csbied 3144 . . . . . 6  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  [_ B  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  (  oF ( +g  `  r
)  |`  ( b  X.  b ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r 
gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `
 x ) ( .r `  r ) ( g `  (
k  oF  -  x ) ) ) ) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
8827, 87eqtrd 2239 . . . . 5  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
8917, 88csbied 3144 . . . 4  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  ->  [_ D  /  d ]_ [_ ( ( Base `  r )  ^m  d
)  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  (  oF ( +g  `  r
)  |`  ( b  X.  b ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r 
gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `
 x ) ( .r `  r ) ( g `  (
k  oF  -  x ) ) ) ) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
909, 89eqtrd 2239 . . 3  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  ->  [_ { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]_ [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
91 psrval.i . . . 4  |-  ( ph  ->  I  e.  W )
9291elexd 2787 . . 3  |-  ( ph  ->  I  e.  _V )
93 psrval.r . . . 4  |-  ( ph  ->  R  e.  X )
9493elexd 2787 . . 3  |-  ( ph  ->  R  e.  _V )
95 basendxnn 12963 . . . . . 6  |-  ( Base `  ndx )  e.  NN
96 funfvex 5606 . . . . . . . . . . . 12  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
9796funfni 5385 . . . . . . . . . . 11  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
9828, 94, 97sylancr 414 . . . . . . . . . 10  |-  ( ph  ->  ( Base `  R
)  e.  _V )
9920, 98eqeltrid 2293 . . . . . . . . 9  |-  ( ph  ->  K  e.  _V )
100 mapvalg 6758 . . . . . . . . . . . . 13  |-  ( ( NN0  e.  _V  /\  I  e.  W )  ->  ( NN0  ^m  I
)  =  { f  |  f : I --> NN0 } )
10110, 91, 100sylancr 414 . . . . . . . . . . . 12  |-  ( ph  ->  ( NN0  ^m  I
)  =  { f  |  f : I --> NN0 } )
102 mapex 6754 . . . . . . . . . . . . 13  |-  ( ( I  e.  W  /\  NN0 
e.  _V )  ->  { f  |  f : I --> NN0 }  e.  _V )
10391, 10, 102sylancl 413 . . . . . . . . . . . 12  |-  ( ph  ->  { f  |  f : I --> NN0 }  e.  _V )
104101, 103eqeltrd 2283 . . . . . . . . . . 11  |-  ( ph  ->  ( NN0  ^m  I
)  e.  _V )
105 rabexg 4195 . . . . . . . . . . 11  |-  ( ( NN0  ^m  I )  e.  _V  ->  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  e.  _V )
106104, 105syl 14 . . . . . . . . . 10  |-  ( ph  ->  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }  e.  _V )
1077, 106eqeltrid 2293 . . . . . . . . 9  |-  ( ph  ->  D  e.  _V )
108 mapvalg 6758 . . . . . . . . 9  |-  ( ( K  e.  _V  /\  D  e.  _V )  ->  ( K  ^m  D
)  =  { f  |  f : D --> K } )
10999, 107, 108syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( K  ^m  D
)  =  { f  |  f : D --> K } )
110 mapex 6754 . . . . . . . . 9  |-  ( ( D  e.  _V  /\  K  e.  _V )  ->  { f  |  f : D --> K }  e.  _V )
111107, 99, 110syl2anc 411 . . . . . . . 8  |-  ( ph  ->  { f  |  f : D --> K }  e.  _V )
112109, 111eqeltrd 2283 . . . . . . 7  |-  ( ph  ->  ( K  ^m  D
)  e.  _V )
11324, 112eqeltrd 2283 . . . . . 6  |-  ( ph  ->  B  e.  _V )
114 opexg 4280 . . . . . 6  |-  ( ( ( Base `  ndx )  e.  NN  /\  B  e.  _V )  ->  <. ( Base `  ndx ) ,  B >.  e.  _V )
11595, 113, 114sylancr 414 . . . . 5  |-  ( ph  -> 
<. ( Base `  ndx ) ,  B >.  e. 
_V )
116 plusgndxnn 13018 . . . . . 6  |-  ( +g  ` 
ndx )  e.  NN
117113, 113ofmresex 6235 . . . . . . 7  |-  ( ph  ->  (  oF  .+  |`  ( B  X.  B
) )  e.  _V )
11848, 117eqeltrid 2293 . . . . . 6  |-  ( ph  -> 
.+b  e.  _V )
119 opexg 4280 . . . . . 6  |-  ( ( ( +g  `  ndx )  e.  NN  /\  .+b  e.  _V )  ->  <. ( +g  `  ndx ) , 
.+b  >.  e.  _V )
120116, 118, 119sylancr 414 . . . . 5  |-  ( ph  -> 
<. ( +g  `  ndx ) ,  .+b  >.  e.  _V )
121 mulrslid 13039 . . . . . . 7  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
122121simpri 113 . . . . . 6  |-  ( .r
`  ndx )  e.  NN
12361mpoexg 6310 . . . . . . 7  |-  ( ( B  e.  _V  /\  B  e.  _V )  ->  .X.  e.  _V )
124113, 113, 123syl2anc 411 . . . . . 6  |-  ( ph  ->  .X.  e.  _V )
125 opexg 4280 . . . . . 6  |-  ( ( ( .r `  ndx )  e.  NN  /\  .X.  e.  _V )  ->  <. ( .r `  ndx ) , 
.X.  >.  e.  _V )
126122, 124, 125sylancr 414 . . . . 5  |-  ( ph  -> 
<. ( .r `  ndx ) ,  .X.  >.  e.  _V )
127 tpexg 4499 . . . . 5  |-  ( (
<. ( Base `  ndx ) ,  B >.  e. 
_V  /\  <. ( +g  ` 
ndx ) ,  .+b  >.  e.  _V  /\  <. ( .r `  ndx ) , 
.X.  >.  e.  _V )  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  e.  _V )
128115, 120, 126, 127syl3anc 1250 . . . 4  |-  ( ph  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  e.  _V )
129 scaslid 13060 . . . . . . 7  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
130129simpri 113 . . . . . 6  |-  (Scalar `  ndx )  e.  NN
131 opexg 4280 . . . . . 6  |-  ( ( (Scalar `  ndx )  e.  NN  /\  R  e.  X )  ->  <. (Scalar ` 
ndx ) ,  R >.  e.  _V )
132130, 93, 131sylancr 414 . . . . 5  |-  ( ph  -> 
<. (Scalar `  ndx ) ,  R >.  e.  _V )
133 vscaslid 13070 . . . . . . 7  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
134133simpri 113 . . . . . 6  |-  ( .s
`  ndx )  e.  NN
13572mpoexg 6310 . . . . . . 7  |-  ( ( K  e.  _V  /\  B  e.  _V )  -> 
.xb  e.  _V )
13699, 113, 135syl2anc 411 . . . . . 6  |-  ( ph  -> 
.xb  e.  _V )
137 opexg 4280 . . . . . 6  |-  ( ( ( .s `  ndx )  e.  NN  /\  .xb  e.  _V )  ->  <. ( .s `  ndx ) , 
.xb  >.  e.  _V )
138134, 136, 137sylancr 414 . . . . 5  |-  ( ph  -> 
<. ( .s `  ndx ) ,  .xb  >.  e.  _V )
139 tsetndxnn 13096 . . . . . 6  |-  (TopSet `  ndx )  e.  NN
140 topnfn 13151 . . . . . . . . . . . 12  |-  TopOpen  Fn  _V
141 funfvex 5606 . . . . . . . . . . . . 13  |-  ( ( Fun  TopOpen  /\  R  e.  dom 
TopOpen )  ->  ( TopOpen `  R )  e.  _V )
142141funfni 5385 . . . . . . . . . . . 12  |-  ( (
TopOpen  Fn  _V  /\  R  e.  _V )  ->  ( TopOpen
`  R )  e. 
_V )
143140, 94, 142sylancr 414 . . . . . . . . . . 11  |-  ( ph  ->  ( TopOpen `  R )  e.  _V )
14476, 143eqeltrid 2293 . . . . . . . . . 10  |-  ( ph  ->  O  e.  _V )
145 snexg 4236 . . . . . . . . . 10  |-  ( O  e.  _V  ->  { O }  e.  _V )
146144, 145syl 14 . . . . . . . . 9  |-  ( ph  ->  { O }  e.  _V )
147 xpexg 4797 . . . . . . . . 9  |-  ( ( D  e.  _V  /\  { O }  e.  _V )  ->  ( D  X.  { O } )  e. 
_V )
148107, 146, 147syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( D  X.  { O } )  e.  _V )
149 ptex 13171 . . . . . . . 8  |-  ( ( D  X.  { O } )  e.  _V  ->  ( Xt_ `  ( D  X.  { O }
) )  e.  _V )
150148, 149syl 14 . . . . . . 7  |-  ( ph  ->  ( Xt_ `  ( D  X.  { O }
) )  e.  _V )
15181, 150eqeltrd 2283 . . . . . 6  |-  ( ph  ->  J  e.  _V )
152 opexg 4280 . . . . . 6  |-  ( ( (TopSet `  ndx )  e.  NN  /\  J  e. 
_V )  ->  <. (TopSet ` 
ndx ) ,  J >.  e.  _V )
153139, 151, 152sylancr 414 . . . . 5  |-  ( ph  -> 
<. (TopSet `  ndx ) ,  J >.  e.  _V )
154 tpexg 4499 . . . . 5  |-  ( (
<. (Scalar `  ndx ) ,  R >.  e.  _V  /\ 
<. ( .s `  ndx ) ,  .xb  >.  e.  _V  /\ 
<. (TopSet `  ndx ) ,  J >.  e.  _V )  ->  { <. (Scalar ` 
ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  .xb  >. ,  <. (TopSet `  ndx ) ,  J >. }  e.  _V )
155132, 138, 153, 154syl3anc 1250 . . . 4  |-  ( ph  ->  { <. (Scalar `  ndx ) ,  R >. , 
<. ( .s `  ndx ) ,  .xb  >. ,  <. (TopSet `  ndx ) ,  J >. }  e.  _V )
156 unexg 4498 . . . 4  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  e.  _V  /\ 
{ <. (Scalar `  ndx ) ,  R >. , 
<. ( .s `  ndx ) ,  .xb  >. ,  <. (TopSet `  ndx ) ,  J >. }  e.  _V )  ->  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } )  e.  _V )
157128, 155, 156syl2anc 411 . . 3  |-  ( ph  ->  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } )  e.  _V )
1583, 90, 92, 94, 157ovmpod 6086 . 2  |-  ( ph  ->  ( I mPwSer  R )  =  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
1591, 158eqtrid 2251 1  |-  ( ph  ->  S  =  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   {cab 2192   {crab 2489   _Vcvv 2773   [_csb 3097    u. cun 3168   {csn 3638   {ctp 3640   <.cop 3641   class class class wbr 4051    |-> cmpt 4113    X. cxp 4681   `'ccnv 4682    |` cres 4685   "cima 4686    Fn wfn 5275   -->wf 5276   ` cfv 5280  (class class class)co 5957    e. cmpo 5959    oFcof 6169    oRcofr 6170    ^m cmap 6748   Fincfn 6840    <_ cle 8128    - cmin 8263   NNcn 9056   NN0cn0 9315   ndxcnx 12904  Slot cslot 12906   Basecbs 12907   +g cplusg 12984   .rcmulr 12985  Scalarcsca 12987   .scvsca 12988  TopSetcts 12990   TopOpenctopn 13147   Xt_cpt 13162    gsumg cgsu 13164   mPwSer cmps 14498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-i2m1 8050
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-tp 3646  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-of 6171  df-1st 6239  df-2nd 6240  df-map 6750  df-ixp 6799  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-7 9120  df-8 9121  df-9 9122  df-n0 9316  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-mulr 12998  df-sca 13000  df-vsca 13001  df-tset 13003  df-rest 13148  df-topn 13149  df-topgen 13167  df-pt 13168  df-psr 14500
This theorem is referenced by:  psrbasg  14511  psrplusgg  14515
  Copyright terms: Public domain W3C validator