ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrval Unicode version

Theorem psrval 14163
Description: Value of the multivariate power series structure. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrval.s  |-  S  =  ( I mPwSer  R )
psrval.k  |-  K  =  ( Base `  R
)
psrval.a  |-  .+  =  ( +g  `  R )
psrval.m  |-  .x.  =  ( .r `  R )
psrval.o  |-  O  =  ( TopOpen `  R )
psrval.d  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
psrval.b  |-  ( ph  ->  B  =  ( K  ^m  D ) )
psrval.p  |-  .+b  =  (  oF  .+  |`  ( B  X.  B ) )
psrval.t  |-  .X.  =  ( f  e.  B ,  g  e.  B  |->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( f `  x ) 
.x.  ( g `  ( k  oF  -  x ) ) ) ) ) ) )
psrval.v  |-  .xb  =  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  oF  .x.  f
) )
psrval.j  |-  ( ph  ->  J  =  ( Xt_ `  ( D  X.  { O } ) ) )
psrval.i  |-  ( ph  ->  I  e.  W )
psrval.r  |-  ( ph  ->  R  e.  X )
Assertion
Ref Expression
psrval  |-  ( ph  ->  S  =  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
Distinct variable groups:    y, h    f,
g, k, x, ph    B, f, g, k, x   
f, h, I, g, k, x    R, f, g, k, x    y,
f, D, g, k, x    f, K, x
Allowed substitution hints:    ph( y, h)    B( y, h)    D( h)    .+ ( x, y, f, g, h, k)    .+b (
x, y, f, g, h, k)    R( y, h)    S( x, y, f, g, h, k)    .xb ( x, y, f, g, h, k)    .x. ( x, y, f, g, h, k)    .X. ( x, y, f, g, h, k)    I( y)    J( x, y, f, g, h, k)    K( y, g, h, k)    O( x, y, f, g, h, k)    W( x, y, f, g, h, k)    X( x, y, f, g, h, k)

Proof of Theorem psrval
Dummy variables  i  r  b  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrval.s . 2  |-  S  =  ( I mPwSer  R )
2 df-psr 14161 . . . 4  |- mPwSer  =  ( i  e.  _V , 
r  e.  _V  |->  [_ { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]_ [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) )
32a1i 9 . . 3  |-  ( ph  -> mPwSer 
=  ( i  e. 
_V ,  r  e. 
_V  |->  [_ { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  / 
d ]_ [_ ( (
Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) ) )
4 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  -> 
i  =  I )
54oveq2d 5935 . . . . . . 7  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  -> 
( NN0  ^m  i
)  =  ( NN0 
^m  I ) )
65rabeqdv 2754 . . . . . 6  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  ->  { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  =  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin } )
7 psrval.d . . . . . 6  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
86, 7eqtr4di 2244 . . . . 5  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  ->  { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  =  D )
98csbeq1d 3088 . . . 4  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  ->  [_ { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]_ [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  =  [_ D  /  d ]_ [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) )
10 nn0ex 9249 . . . . . . . . 9  |-  NN0  e.  _V
11 vex 2763 . . . . . . . . 9  |-  i  e. 
_V
1210, 11mapval 6716 . . . . . . . 8  |-  ( NN0 
^m  i )  =  { f  |  f : i --> NN0 }
13 mapex 6710 . . . . . . . . 9  |-  ( ( i  e.  _V  /\  NN0 
e.  _V )  ->  { f  |  f : i --> NN0 }  e.  _V )
1411, 10, 13mp2an 426 . . . . . . . 8  |-  { f  |  f : i --> NN0 }  e.  _V
1512, 14eqeltri 2266 . . . . . . 7  |-  ( NN0 
^m  i )  e. 
_V
1615rabex 4174 . . . . . 6  |-  { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  e.  _V
178, 16eqeltrrdi 2285 . . . . 5  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  ->  D  e.  _V )
18 simplrr 536 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  r  =  R )
1918fveq2d 5559 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  ( Base `  r )  =  ( Base `  R
) )
20 psrval.k . . . . . . . . . 10  |-  K  =  ( Base `  R
)
2119, 20eqtr4di 2244 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  ( Base `  r )  =  K )
22 simpr 110 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  d  =  D )
2321, 22oveq12d 5937 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  (
( Base `  r )  ^m  d )  =  ( K  ^m  D ) )
24 psrval.b . . . . . . . . 9  |-  ( ph  ->  B  =  ( K  ^m  D ) )
2524ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  B  =  ( K  ^m  D ) )
2623, 25eqtr4d 2229 . . . . . . 7  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  (
( Base `  r )  ^m  d )  =  B )
2726csbeq1d 3088 . . . . . 6  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  =  [_ B  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  (  oF ( +g  `  r
)  |`  ( b  X.  b ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r 
gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `
 x ) ( .r `  r ) ( g `  (
k  oF  -  x ) ) ) ) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) )
28 basfn 12679 . . . . . . . . . . 11  |-  Base  Fn  _V
29 vex 2763 . . . . . . . . . . 11  |-  r  e. 
_V
30 funfvex 5572 . . . . . . . . . . . 12  |-  ( ( Fun  Base  /\  r  e.  dom  Base )  ->  ( Base `  r )  e. 
_V )
3130funfni 5355 . . . . . . . . . . 11  |-  ( (
Base  Fn  _V  /\  r  e.  _V )  ->  ( Base `  r )  e. 
_V )
3228, 29, 31mp2an 426 . . . . . . . . . 10  |-  ( Base `  r )  e.  _V
33 vex 2763 . . . . . . . . . 10  |-  d  e. 
_V
3432, 33mapval 6716 . . . . . . . . 9  |-  ( (
Base `  r )  ^m  d )  =  {
f  |  f : d --> ( Base `  r
) }
35 mapex 6710 . . . . . . . . . 10  |-  ( ( d  e.  _V  /\  ( Base `  r )  e.  _V )  ->  { f  |  f : d --> ( Base `  r
) }  e.  _V )
3633, 32, 35mp2an 426 . . . . . . . . 9  |-  { f  |  f : d --> ( Base `  r
) }  e.  _V
3734, 36eqeltri 2266 . . . . . . . 8  |-  ( (
Base `  r )  ^m  d )  e.  _V
3826, 37eqeltrrdi 2285 . . . . . . 7  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  B  e.  _V )
39 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  b  =  B )
4039opeq2d 3812 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  <. ( Base `  ndx ) ,  b >.  =  <. (
Base `  ndx ) ,  B >. )
4118adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  r  =  R )
4241fveq2d 5559 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( +g  `  r )  =  ( +g  `  R
) )
43 psrval.a . . . . . . . . . . . . . 14  |-  .+  =  ( +g  `  R )
4442, 43eqtr4di 2244 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( +g  `  r )  = 
.+  )
4544ofeqd 6134 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  oF ( +g  `  r
)  =  oF  .+  )
4639, 39xpeq12d 4685 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
b  X.  b )  =  ( B  X.  B ) )
4745, 46reseq12d 4944 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (  oF ( +g  `  r )  |`  (
b  X.  b ) )  =  (  oF  .+  |`  ( B  X.  B ) ) )
48 psrval.p . . . . . . . . . . 11  |-  .+b  =  (  oF  .+  |`  ( B  X.  B ) )
4947, 48eqtr4di 2244 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (  oF ( +g  `  r )  |`  (
b  X.  b ) )  =  .+b  )
5049opeq2d 3812 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >.  =  <. ( +g  `  ndx ) ,  .+b  >. )
5122adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  d  =  D )
5251rabeqdv 2754 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  { y  e.  d  |  y  oR  <_  k }  =  { y  e.  D  |  y  oR  <_  k } )
5341fveq2d 5559 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( .r `  r )  =  ( .r `  R
) )
54 psrval.m . . . . . . . . . . . . . . . . 17  |-  .x.  =  ( .r `  R )
5553, 54eqtr4di 2244 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( .r `  r )  = 
.x.  )
5655oveqd 5936 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
( f `  x
) ( .r `  r ) ( g `
 ( k  oF  -  x ) ) )  =  ( ( f `  x
)  .x.  ( g `  ( k  oF  -  x ) ) ) )
5752, 56mpteq12dv 4112 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `
 x ) ( .r `  r ) ( g `  (
k  oF  -  x ) ) ) )  =  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( f `  x )  .x.  (
g `  ( k  oF  -  x
) ) ) ) )
5841, 57oveq12d 5937 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
r  gsumg  ( x  e.  {
y  e.  d  |  y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  r
) ( g `  ( k  oF  -  x ) ) ) ) )  =  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( f `  x ) 
.x.  ( g `  ( k  oF  -  x ) ) ) ) ) )
5951, 58mpteq12dv 4112 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
k  e.  d  |->  ( r  gsumg  ( x  e.  {
y  e.  d  |  y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  r
) ( g `  ( k  oF  -  x ) ) ) ) ) )  =  ( k  e.  D  |->  ( R  gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( f `  x )  .x.  (
g `  ( k  oF  -  x
) ) ) ) ) ) )
6039, 39, 59mpoeq123dv 5981 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  {
y  e.  d  |  y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  r
) ( g `  ( k  oF  -  x ) ) ) ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( k  e.  D  |->  ( R 
gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( f `
 x )  .x.  ( g `  (
k  oF  -  x ) ) ) ) ) ) ) )
61 psrval.t . . . . . . . . . . 11  |-  .X.  =  ( f  e.  B ,  g  e.  B  |->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  {
y  e.  D  | 
y  oR  <_ 
k }  |->  ( ( f `  x ) 
.x.  ( g `  ( k  oF  -  x ) ) ) ) ) ) )
6260, 61eqtr4di 2244 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  {
y  e.  d  |  y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  r
) ( g `  ( k  oF  -  x ) ) ) ) ) ) )  =  .X.  )
6362opeq2d 3812 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b 
|->  ( k  e.  d 
|->  ( r  gsumg  ( x  e.  {
y  e.  d  |  y  oR  <_ 
k }  |->  ( ( f `  x ) ( .r `  r
) ( g `  ( k  oF  -  x ) ) ) ) ) ) ) >.  =  <. ( .r `  ndx ) ,  .X.  >. )
6440, 50, 63tpeq123d 3711 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  { <. (
Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  =  { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. ( .r `  ndx ) , 
.X.  >. } )
6541opeq2d 3812 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  <. (Scalar ` 
ndx ) ,  r
>.  =  <. (Scalar `  ndx ) ,  R >. )
6621adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( Base `  r )  =  K )
6755ofeqd 6134 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  oF ( .r `  r )  =  oF  .x.  )
6851xpeq1d 4683 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
d  X.  { x } )  =  ( D  X.  { x } ) )
69 eqidd 2194 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  f  =  f )
7067, 68, 69oveq123d 5940 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
( d  X.  {
x } )  oF ( .r `  r ) f )  =  ( ( D  X.  { x }
)  oF  .x.  f ) )
7166, 39, 70mpoeq123dv 5981 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )  =  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x }
)  oF  .x.  f ) ) )
72 psrval.v . . . . . . . . . . 11  |-  .xb  =  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  oF  .x.  f
) )
7371, 72eqtr4di 2244 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )  =  .xb  )
7473opeq2d 3812 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  <. ( .s `  ndx ) ,  ( x  e.  (
Base `  r ) ,  f  e.  b  |->  ( ( d  X. 
{ x } )  oF ( .r
`  r ) f ) ) >.  =  <. ( .s `  ndx ) ,  .xb  >. )
7541fveq2d 5559 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( TopOpen
`  r )  =  ( TopOpen `  R )
)
76 psrval.o . . . . . . . . . . . . . . 15  |-  O  =  ( TopOpen `  R )
7775, 76eqtr4di 2244 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( TopOpen
`  r )  =  O )
7877sneqd 3632 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  { (
TopOpen `  r ) }  =  { O }
)
7951, 78xpeq12d 4685 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  (
d  X.  { (
TopOpen `  r ) } )  =  ( D  X.  { O }
) )
8079fveq2d 5559 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( Xt_ `  ( d  X. 
{ ( TopOpen `  r
) } ) )  =  ( Xt_ `  ( D  X.  { O }
) ) )
81 psrval.j . . . . . . . . . . . 12  |-  ( ph  ->  J  =  ( Xt_ `  ( D  X.  { O } ) ) )
8281ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  J  =  ( Xt_ `  ( D  X.  { O }
) ) )
8380, 82eqtr4d 2229 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( Xt_ `  ( d  X. 
{ ( TopOpen `  r
) } ) )  =  J )
8483opeq2d 3812 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  <. (TopSet ` 
ndx ) ,  (
Xt_ `  ( d  X.  { ( TopOpen `  r
) } ) )
>.  =  <. (TopSet `  ndx ) ,  J >. )
8565, 74, 84tpeq123d 3711 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  { <. (Scalar `  ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. }  =  { <. (Scalar ` 
ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  .xb  >. ,  <. (TopSet `  ndx ) ,  J >. } )
8664, 85uneq12d 3315 . . . . . . 7  |-  ( ( ( ( ph  /\  ( i  =  I  /\  r  =  R ) )  /\  d  =  D )  /\  b  =  B )  ->  ( { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  (  oF ( +g  `  r
)  |`  ( b  X.  b ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r 
gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `
 x ) ( .r `  r ) ( g `  (
k  oF  -  x ) ) ) ) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
8738, 86csbied 3128 . . . . . 6  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  [_ B  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  (  oF ( +g  `  r
)  |`  ( b  X.  b ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r 
gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `
 x ) ( .r `  r ) ( g `  (
k  oF  -  x ) ) ) ) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
8827, 87eqtrd 2226 . . . . 5  |-  ( ( ( ph  /\  (
i  =  I  /\  r  =  R )
)  /\  d  =  D )  ->  [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
8917, 88csbied 3128 . . . 4  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  ->  [_ D  /  d ]_ [_ ( ( Base `  r )  ^m  d
)  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  (  oF ( +g  `  r
)  |`  ( b  X.  b ) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r 
gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `
 x ) ( .r `  r ) ( g `  (
k  oF  -  x ) ) ) ) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
909, 89eqtrd 2226 . . 3  |-  ( (
ph  /\  ( i  =  I  /\  r  =  R ) )  ->  [_ { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]_ [_ (
( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } )  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
91 psrval.i . . . 4  |-  ( ph  ->  I  e.  W )
9291elexd 2773 . . 3  |-  ( ph  ->  I  e.  _V )
93 psrval.r . . . 4  |-  ( ph  ->  R  e.  X )
9493elexd 2773 . . 3  |-  ( ph  ->  R  e.  _V )
95 basendxnn 12677 . . . . . 6  |-  ( Base `  ndx )  e.  NN
96 funfvex 5572 . . . . . . . . . . . 12  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
9796funfni 5355 . . . . . . . . . . 11  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
9828, 94, 97sylancr 414 . . . . . . . . . 10  |-  ( ph  ->  ( Base `  R
)  e.  _V )
9920, 98eqeltrid 2280 . . . . . . . . 9  |-  ( ph  ->  K  e.  _V )
100 mapvalg 6714 . . . . . . . . . . . . 13  |-  ( ( NN0  e.  _V  /\  I  e.  W )  ->  ( NN0  ^m  I
)  =  { f  |  f : I --> NN0 } )
10110, 91, 100sylancr 414 . . . . . . . . . . . 12  |-  ( ph  ->  ( NN0  ^m  I
)  =  { f  |  f : I --> NN0 } )
102 mapex 6710 . . . . . . . . . . . . 13  |-  ( ( I  e.  W  /\  NN0 
e.  _V )  ->  { f  |  f : I --> NN0 }  e.  _V )
10391, 10, 102sylancl 413 . . . . . . . . . . . 12  |-  ( ph  ->  { f  |  f : I --> NN0 }  e.  _V )
104101, 103eqeltrd 2270 . . . . . . . . . . 11  |-  ( ph  ->  ( NN0  ^m  I
)  e.  _V )
105 rabexg 4173 . . . . . . . . . . 11  |-  ( ( NN0  ^m  I )  e.  _V  ->  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  e.  _V )
106104, 105syl 14 . . . . . . . . . 10  |-  ( ph  ->  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }  e.  _V )
1077, 106eqeltrid 2280 . . . . . . . . 9  |-  ( ph  ->  D  e.  _V )
108 mapvalg 6714 . . . . . . . . 9  |-  ( ( K  e.  _V  /\  D  e.  _V )  ->  ( K  ^m  D
)  =  { f  |  f : D --> K } )
10999, 107, 108syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( K  ^m  D
)  =  { f  |  f : D --> K } )
110 mapex 6710 . . . . . . . . 9  |-  ( ( D  e.  _V  /\  K  e.  _V )  ->  { f  |  f : D --> K }  e.  _V )
111107, 99, 110syl2anc 411 . . . . . . . 8  |-  ( ph  ->  { f  |  f : D --> K }  e.  _V )
112109, 111eqeltrd 2270 . . . . . . 7  |-  ( ph  ->  ( K  ^m  D
)  e.  _V )
11324, 112eqeltrd 2270 . . . . . 6  |-  ( ph  ->  B  e.  _V )
114 opexg 4258 . . . . . 6  |-  ( ( ( Base `  ndx )  e.  NN  /\  B  e.  _V )  ->  <. ( Base `  ndx ) ,  B >.  e.  _V )
11595, 113, 114sylancr 414 . . . . 5  |-  ( ph  -> 
<. ( Base `  ndx ) ,  B >.  e. 
_V )
116 plusgndxnn 12732 . . . . . 6  |-  ( +g  ` 
ndx )  e.  NN
117113, 113ofmresex 6191 . . . . . . 7  |-  ( ph  ->  (  oF  .+  |`  ( B  X.  B
) )  e.  _V )
11848, 117eqeltrid 2280 . . . . . 6  |-  ( ph  -> 
.+b  e.  _V )
119 opexg 4258 . . . . . 6  |-  ( ( ( +g  `  ndx )  e.  NN  /\  .+b  e.  _V )  ->  <. ( +g  `  ndx ) , 
.+b  >.  e.  _V )
120116, 118, 119sylancr 414 . . . . 5  |-  ( ph  -> 
<. ( +g  `  ndx ) ,  .+b  >.  e.  _V )
121 mulrslid 12752 . . . . . . 7  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
122121simpri 113 . . . . . 6  |-  ( .r
`  ndx )  e.  NN
12361mpoexg 6266 . . . . . . 7  |-  ( ( B  e.  _V  /\  B  e.  _V )  ->  .X.  e.  _V )
124113, 113, 123syl2anc 411 . . . . . 6  |-  ( ph  ->  .X.  e.  _V )
125 opexg 4258 . . . . . 6  |-  ( ( ( .r `  ndx )  e.  NN  /\  .X.  e.  _V )  ->  <. ( .r `  ndx ) , 
.X.  >.  e.  _V )
126122, 124, 125sylancr 414 . . . . 5  |-  ( ph  -> 
<. ( .r `  ndx ) ,  .X.  >.  e.  _V )
127 tpexg 4476 . . . . 5  |-  ( (
<. ( Base `  ndx ) ,  B >.  e. 
_V  /\  <. ( +g  ` 
ndx ) ,  .+b  >.  e.  _V  /\  <. ( .r `  ndx ) , 
.X.  >.  e.  _V )  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  e.  _V )
128115, 120, 126, 127syl3anc 1249 . . . 4  |-  ( ph  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  e.  _V )
129 scaslid 12773 . . . . . . 7  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
130129simpri 113 . . . . . 6  |-  (Scalar `  ndx )  e.  NN
131 opexg 4258 . . . . . 6  |-  ( ( (Scalar `  ndx )  e.  NN  /\  R  e.  X )  ->  <. (Scalar ` 
ndx ) ,  R >.  e.  _V )
132130, 93, 131sylancr 414 . . . . 5  |-  ( ph  -> 
<. (Scalar `  ndx ) ,  R >.  e.  _V )
133 vscaslid 12783 . . . . . . 7  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
134133simpri 113 . . . . . 6  |-  ( .s
`  ndx )  e.  NN
13572mpoexg 6266 . . . . . . 7  |-  ( ( K  e.  _V  /\  B  e.  _V )  -> 
.xb  e.  _V )
13699, 113, 135syl2anc 411 . . . . . 6  |-  ( ph  -> 
.xb  e.  _V )
137 opexg 4258 . . . . . 6  |-  ( ( ( .s `  ndx )  e.  NN  /\  .xb  e.  _V )  ->  <. ( .s `  ndx ) , 
.xb  >.  e.  _V )
138134, 136, 137sylancr 414 . . . . 5  |-  ( ph  -> 
<. ( .s `  ndx ) ,  .xb  >.  e.  _V )
139 tsetndxnn 12809 . . . . . 6  |-  (TopSet `  ndx )  e.  NN
140 topnfn 12858 . . . . . . . . . . . 12  |-  TopOpen  Fn  _V
141 funfvex 5572 . . . . . . . . . . . . 13  |-  ( ( Fun  TopOpen  /\  R  e.  dom 
TopOpen )  ->  ( TopOpen `  R )  e.  _V )
142141funfni 5355 . . . . . . . . . . . 12  |-  ( (
TopOpen  Fn  _V  /\  R  e.  _V )  ->  ( TopOpen
`  R )  e. 
_V )
143140, 94, 142sylancr 414 . . . . . . . . . . 11  |-  ( ph  ->  ( TopOpen `  R )  e.  _V )
14476, 143eqeltrid 2280 . . . . . . . . . 10  |-  ( ph  ->  O  e.  _V )
145 snexg 4214 . . . . . . . . . 10  |-  ( O  e.  _V  ->  { O }  e.  _V )
146144, 145syl 14 . . . . . . . . 9  |-  ( ph  ->  { O }  e.  _V )
147 xpexg 4774 . . . . . . . . 9  |-  ( ( D  e.  _V  /\  { O }  e.  _V )  ->  ( D  X.  { O } )  e. 
_V )
148107, 146, 147syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( D  X.  { O } )  e.  _V )
149 ptex 12878 . . . . . . . 8  |-  ( ( D  X.  { O } )  e.  _V  ->  ( Xt_ `  ( D  X.  { O }
) )  e.  _V )
150148, 149syl 14 . . . . . . 7  |-  ( ph  ->  ( Xt_ `  ( D  X.  { O }
) )  e.  _V )
15181, 150eqeltrd 2270 . . . . . 6  |-  ( ph  ->  J  e.  _V )
152 opexg 4258 . . . . . 6  |-  ( ( (TopSet `  ndx )  e.  NN  /\  J  e. 
_V )  ->  <. (TopSet ` 
ndx ) ,  J >.  e.  _V )
153139, 151, 152sylancr 414 . . . . 5  |-  ( ph  -> 
<. (TopSet `  ndx ) ,  J >.  e.  _V )
154 tpexg 4476 . . . . 5  |-  ( (
<. (Scalar `  ndx ) ,  R >.  e.  _V  /\ 
<. ( .s `  ndx ) ,  .xb  >.  e.  _V  /\ 
<. (TopSet `  ndx ) ,  J >.  e.  _V )  ->  { <. (Scalar ` 
ndx ) ,  R >. ,  <. ( .s `  ndx ) ,  .xb  >. ,  <. (TopSet `  ndx ) ,  J >. }  e.  _V )
155132, 138, 153, 154syl3anc 1249 . . . 4  |-  ( ph  ->  { <. (Scalar `  ndx ) ,  R >. , 
<. ( .s `  ndx ) ,  .xb  >. ,  <. (TopSet `  ndx ) ,  J >. }  e.  _V )
156 unexg 4475 . . . 4  |-  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  e.  _V  /\ 
{ <. (Scalar `  ndx ) ,  R >. , 
<. ( .s `  ndx ) ,  .xb  >. ,  <. (TopSet `  ndx ) ,  J >. }  e.  _V )  ->  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } )  e.  _V )
157128, 155, 156syl2anc 411 . . 3  |-  ( ph  ->  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } )  e.  _V )
1583, 90, 92, 94, 157ovmpod 6047 . 2  |-  ( ph  ->  ( I mPwSer  R )  =  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
1591, 158eqtrid 2238 1  |-  ( ph  ->  S  =  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s `  ndx ) , 
.xb  >. ,  <. (TopSet ` 
ndx ) ,  J >. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   {cab 2179   {crab 2476   _Vcvv 2760   [_csb 3081    u. cun 3152   {csn 3619   {ctp 3621   <.cop 3622   class class class wbr 4030    |-> cmpt 4091    X. cxp 4658   `'ccnv 4659    |` cres 4662   "cima 4663    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5919    e. cmpo 5921    oFcof 6130    oRcofr 6131    ^m cmap 6704   Fincfn 6796    <_ cle 8057    - cmin 8192   NNcn 8984   NN0cn0 9243   ndxcnx 12618  Slot cslot 12620   Basecbs 12621   +g cplusg 12698   .rcmulr 12699  Scalarcsca 12701   .scvsca 12702  TopSetcts 12704   TopOpenctopn 12854   Xt_cpt 12869    gsumg cgsu 12871   mPwSer cmps 14160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-i2m1 7979
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-of 6132  df-1st 6195  df-2nd 6196  df-map 6706  df-ixp 6755  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-tset 12717  df-rest 12855  df-topn 12856  df-topgen 12874  df-pt 12875  df-psr 14161
This theorem is referenced by:  psrbasg  14170  psrplusgg  14173
  Copyright terms: Public domain W3C validator