| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ofeqd | GIF version | ||
| Description: Equality theorem for function operation, deduction form. (Contributed by SN, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| ofeqd.1 | ⊢ (𝜑 → 𝑅 = 𝑆) |
| Ref | Expression |
|---|---|
| ofeqd | ⊢ (𝜑 → ∘𝑓 𝑅 = ∘𝑓 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofeqd.1 | . . . . 5 ⊢ (𝜑 → 𝑅 = 𝑆) | |
| 2 | 1 | oveqd 5951 | . . . 4 ⊢ (𝜑 → ((𝑓‘𝑥)𝑅(𝑔‘𝑥)) = ((𝑓‘𝑥)𝑆(𝑔‘𝑥))) |
| 3 | 2 | mpteq2dv 4134 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥)))) |
| 4 | 3 | mpoeq3dv 6001 | . 2 ⊢ (𝜑 → (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥))))) |
| 5 | df-of 6148 | . 2 ⊢ ∘𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) | |
| 6 | df-of 6148 | . 2 ⊢ ∘𝑓 𝑆 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥)))) | |
| 7 | 4, 5, 6 | 3eqtr4g 2262 | 1 ⊢ (𝜑 → ∘𝑓 𝑅 = ∘𝑓 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 Vcvv 2771 ∩ cin 3164 ↦ cmpt 4104 dom cdm 4673 ‘cfv 5268 (class class class)co 5934 ∈ cmpo 5936 ∘𝑓 cof 6146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-iota 5229 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-of 6148 |
| This theorem is referenced by: psrval 14346 lgseisenlem3 15467 lgseisenlem4 15468 |
| Copyright terms: Public domain | W3C validator |