HomeHome Intuitionistic Logic Explorer
Theorem List (p. 62 of 127)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6101-6200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsmo0 6101 The null set is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 20-Nov-2011.)
 |- 
 Smo  (/)
 
Theoremsmofvon 6102 If  B is a strictly monotone ordinal function, and  A is in the domain of  B, then the value of the function at 
A is an ordinal. (Contributed by Andrew Salmon, 20-Nov-2011.)
 |-  ( ( Smo  B  /\  A  e.  dom  B )  ->  ( B `  A )  e.  On )
 
Theoremsmoel 6103 If  x is less than  y then a strictly monotone function's value will be strictly less at  x than at  y. (Contributed by Andrew Salmon, 22-Nov-2011.)
 |-  ( ( Smo  B  /\  A  e.  dom  B  /\  C  e.  A ) 
 ->  ( B `  C )  e.  ( B `  A ) )
 
Theoremsmoiun 6104* The value of a strictly monotone ordinal function contains its indexed union. (Contributed by Andrew Salmon, 22-Nov-2011.)
 |-  ( ( Smo  B  /\  A  e.  dom  B )  ->  U_ x  e.  A  ( B `  x ) 
 C_  ( B `  A ) )
 
Theoremsmoiso 6105 If  F is an isomorphism from an ordinal  A onto  B, which is a subset of the ordinals, then 
F is a strictly monotonic function. Exercise 3 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 24-Nov-2011.)
 |-  ( ( F  Isom  _E 
 ,  _E  ( A ,  B )  /\  Ord 
 A  /\  B  C_  On )  ->  Smo  F )
 
Theoremsmoel2 6106 A strictly monotone ordinal function preserves the epsilon relation. (Contributed by Mario Carneiro, 12-Mar-2013.)
 |-  ( ( ( F  Fn  A  /\  Smo  F )  /\  ( B  e.  A  /\  C  e.  B ) )  ->  ( F `  C )  e.  ( F `  B ) )
 
2.6.19  "Strong" transfinite recursion
 
Syntaxcrecs 6107 Notation for a function defined by strong transfinite recursion.
 class recs ( F )
 
Definitiondf-recs 6108* Define a function recs ( F ) on  On, the class of ordinal numbers, by transfinite recursion given a rule  F which sets the next value given all values so far. See df-irdg 6173 for more details on why this definition is desirable. Unlike df-irdg 6173 which restricts the update rule to use only the previous value, this version allows the update rule to use all previous values, which is why it is described as "strong", although it is actually more primitive. See tfri1d 6138 and tfri2d 6139 for the primary contract of this definition.

(Contributed by Stefan O'Rear, 18-Jan-2015.)

 |- recs
 ( F )  = 
 U. { f  | 
 E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }
 
Theoremrecseq 6109 Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
 |-  ( F  =  G  -> recs ( F )  = recs ( G ) )
 
Theoremnfrecs 6110 Bound-variable hypothesis builder for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
 |-  F/_ x F   =>    |-  F/_ xrecs ( F )
 
Theoremtfrlem1 6111* A technical lemma for transfinite recursion. Compare Lemma 1 of [TakeutiZaring] p. 47. (Contributed by NM, 23-Mar-1995.) (Revised by Mario Carneiro, 24-May-2019.)
 |-  ( ph  ->  A  e.  On )   &    |-  ( ph  ->  ( Fun  F  /\  A  C_ 
 dom  F ) )   &    |-  ( ph  ->  ( Fun  G  /\  A  C_  dom  G ) )   &    |-  ( ph  ->  A. x  e.  A  ( F `  x )  =  ( B `  ( F  |`  x ) ) )   &    |-  ( ph  ->  A. x  e.  A  ( G `  x )  =  ( B `  ( G  |`  x ) ) )   =>    |-  ( ph  ->  A. x  e.  A  ( F `  x )  =  ( G `  x ) )
 
Theoremtfrlem3ag 6112* Lemma for transfinite recursion. This lemma just changes some bound variables in  A for later use. (Contributed by Jim Kingdon, 5-Jul-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |-  ( G  e.  _V  ->  ( G  e.  A  <->  E. z  e.  On  ( G  Fn  z  /\  A. w  e.  z  ( G `  w )  =  ( F `  ( G  |`  w ) ) ) ) )
 
Theoremtfrlem3a 6113* Lemma for transfinite recursion. Let  A be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in  A for later use. (Contributed by NM, 9-Apr-1995.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  G  e.  _V   =>    |-  ( G  e.  A  <->  E. z  e.  On  ( G  Fn  z  /\  A. w  e.  z  ( G `  w )  =  ( F `  ( G  |`  w ) ) ) )
 
Theoremtfrlem3 6114* Lemma for transfinite recursion. Let  A be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in  A for later use. (Contributed by NM, 9-Apr-1995.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |-  A  =  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) }
 
Theoremtfrlem3-2d 6115* Lemma for transfinite recursion which changes a bound variable (Contributed by Jim Kingdon, 2-Jul-2019.)
 |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e. 
 _V ) )   =>    |-  ( ph  ->  ( Fun  F  /\  ( F `  g )  e. 
 _V ) )
 
Theoremtfrlem4 6116* Lemma for transfinite recursion.  A is the class of all "acceptable" functions, and  F is their union. First we show that an acceptable function is in fact a function. (Contributed by NM, 9-Apr-1995.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |-  ( g  e.  A  ->  Fun  g )
 
Theoremtfrlem5 6117* Lemma for transfinite recursion. The values of two acceptable functions are the same within their domains. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 24-May-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |-  ( ( g  e.  A  /\  h  e.  A )  ->  (
 ( x g u 
 /\  x h v )  ->  u  =  v ) )
 
Theoremrecsfval 6118* Lemma for transfinite recursion. The definition recs is the union of all acceptable functions. (Contributed by Mario Carneiro, 9-May-2015.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |- recs
 ( F )  = 
 U. A
 
Theoremtfrlem6 6119* Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |- 
 Rel recs ( F )
 
Theoremtfrlem7 6120* Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |- 
 Fun recs ( F )
 
Theoremtfrlem8 6121* Lemma for transfinite recursion. The domain of recs is ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |- 
 Ord  dom recs ( F )
 
Theoremtfrlem9 6122* Lemma for transfinite recursion. Here we compute the value of recs (the union of all acceptable functions). (Contributed by NM, 17-Aug-1994.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   =>    |-  ( B  e.  dom recs ( F )  ->  (recs ( F ) `  B )  =  ( F `  (recs ( F )  |`  B ) ) )
 
Theoremtfrfun 6123 Transfinite recursion produces a function. (Contributed by Jim Kingdon, 20-Aug-2021.)
 |- 
 Fun recs ( F )
 
Theoremtfr2a 6124 A weak version of transfinite recursion. (Contributed by Mario Carneiro, 24-Jun-2015.)
 |-  F  = recs ( G )   =>    |-  ( A  e.  dom  F 
 ->  ( F `  A )  =  ( G `  ( F  |`  A ) ) )
 
Theoremtfr0dm 6125 Transfinite recursion is defined at the empty set. (Contributed by Jim Kingdon, 8-Mar-2022.)
 |-  F  = recs ( G )   =>    |-  ( ( G `  (/) )  e.  V  ->  (/)  e. 
 dom  F )
 
Theoremtfr0 6126 Transfinite recursion at the empty set. (Contributed by Jim Kingdon, 8-May-2020.)
 |-  F  = recs ( G )   =>    |-  ( ( G `  (/) )  e.  V  ->  ( F `  (/) )  =  ( G `  (/) ) )
 
Theoremtfrlemisucfn 6127* We can extend an acceptable function by one element to produce a function. Lemma for tfrlemi1 6135. (Contributed by Jim Kingdon, 2-Jul-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e.  _V )
 )   &    |-  ( ph  ->  z  e.  On )   &    |-  ( ph  ->  g  Fn  z )   &    |-  ( ph  ->  g  e.  A )   =>    |-  ( ph  ->  (
 g  u.  { <. z ,  ( F `  g ) >. } )  Fn  suc  z )
 
Theoremtfrlemisucaccv 6128* We can extend an acceptable function by one element to produce an acceptable function. Lemma for tfrlemi1 6135. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e.  _V )
 )   &    |-  ( ph  ->  z  e.  On )   &    |-  ( ph  ->  g  Fn  z )   &    |-  ( ph  ->  g  e.  A )   =>    |-  ( ph  ->  (
 g  u.  { <. z ,  ( F `  g ) >. } )  e.  A )
 
Theoremtfrlemibacc 6129* Each element of  B is an acceptable function. Lemma for tfrlemi1 6135. (Contributed by Jim Kingdon, 14-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e.  _V )
 )   &    |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
  g ) >. } ) ) }   &    |-  ( ph  ->  x  e.  On )   &    |-  ( ph  ->  A. z  e.  x  E. g
 ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )   =>    |-  ( ph  ->  B 
 C_  A )
 
Theoremtfrlemibxssdm 6130* The union of  B is defined on all ordinals. Lemma for tfrlemi1 6135. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e.  _V )
 )   &    |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
  g ) >. } ) ) }   &    |-  ( ph  ->  x  e.  On )   &    |-  ( ph  ->  A. z  e.  x  E. g
 ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )   =>    |-  ( ph  ->  x 
 C_  dom  U. B )
 
Theoremtfrlemibfn 6131* The union of  B is a function defined on  x. Lemma for tfrlemi1 6135. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e.  _V )
 )   &    |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
  g ) >. } ) ) }   &    |-  ( ph  ->  x  e.  On )   &    |-  ( ph  ->  A. z  e.  x  E. g
 ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )   =>    |-  ( ph  ->  U. B  Fn  x )
 
Theoremtfrlemibex 6132* The set  B exists. Lemma for tfrlemi1 6135. (Contributed by Jim Kingdon, 17-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e.  _V )
 )   &    |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
  g ) >. } ) ) }   &    |-  ( ph  ->  x  e.  On )   &    |-  ( ph  ->  A. z  e.  x  E. g
 ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )   =>    |-  ( ph  ->  B  e.  _V )
 
Theoremtfrlemiubacc 6133* The union of  B satisfies the recursion rule (lemma for tfrlemi1 6135). (Contributed by Jim Kingdon, 22-Apr-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e.  _V )
 )   &    |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
  g ) >. } ) ) }   &    |-  ( ph  ->  x  e.  On )   &    |-  ( ph  ->  A. z  e.  x  E. g
 ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )   =>    |-  ( ph  ->  A. u  e.  x  (
 U. B `  u )  =  ( F `  ( U. B  |`  u ) ) )
 
Theoremtfrlemiex 6134* Lemma for tfrlemi1 6135. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e.  _V )
 )   &    |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
  g ) >. } ) ) }   &    |-  ( ph  ->  x  e.  On )   &    |-  ( ph  ->  A. z  e.  x  E. g
 ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )   =>    |-  ( ph  ->  E. f ( f  Fn  x  /\  A. u  e.  x  ( f `  u )  =  ( F `  ( f  |`  u ) ) ) )
 
Theoremtfrlemi1 6135* We can define an acceptable function on any ordinal.

As with many of the transfinite recursion theorems, we have a hypothesis that states that  F is a function and that it is defined for all ordinals. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)

 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e.  _V )
 )   =>    |-  ( ( ph  /\  C  e.  On )  ->  E. g
 ( g  Fn  C  /\  A. u  e.  C  ( g `  u )  =  ( F `  ( g  |`  u ) ) ) )
 
Theoremtfrlemi14d 6136* The domain of recs is all ordinals (lemma for transfinite recursion). (Contributed by Jim Kingdon, 9-Jul-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e.  _V )
 )   =>    |-  ( ph  ->  dom recs ( F )  =  On )
 
Theoremtfrexlem 6137* The transfinite recursion function is set-like if the input is. (Contributed by Mario Carneiro, 3-Jul-2019.)
 |-  A  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( F `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  A. x ( Fun  F  /\  ( F `  x )  e.  _V )
 )   =>    |-  ( ( ph  /\  C  e.  V )  ->  (recs ( F ) `  C )  e.  _V )
 
Theoremtfri1d 6138* Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47, with an additional condition.

The condition is that  G is defined "everywhere", which is stated here as  ( G `  x )  e.  _V. Alternately,  A. x  e.  On A. f ( f  Fn  x  -> 
f  e.  dom  G
) would suffice.

Given a function  G satisfying that condition, we define a class  A of all "acceptable" functions. The final function we're interested in is the union 
F  = recs ( G ) of them.  F is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of  F. In this first part we show that  F is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.)

 |-  F  = recs ( G )   &    |-  ( ph  ->  A. x ( Fun  G  /\  ( G `  x )  e.  _V )
 )   =>    |-  ( ph  ->  F  Fn  On )
 
Theoremtfri2d 6139* Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule  G ( as described at tfri1 6168). Here we show that the function  F has the property that for any function  G satisfying that condition, the "next" value of  F is  G recursively applied to all "previous" values of  F. (Contributed by Jim Kingdon, 4-May-2019.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  A. x ( Fun  G  /\  ( G `  x )  e.  _V )
 )   =>    |-  ( ( ph  /\  A  e.  On )  ->  ( F `  A )  =  ( G `  ( F  |`  A ) ) )
 
Theoremtfr1onlem3ag 6140* Lemma for transfinite recursion. This lemma changes some bound variables in  A (version of tfrlem3ag 6112 but for tfr1on 6153 related lemmas). (Contributed by Jim Kingdon, 13-Mar-2022.)
 |-  A  =  { f  |  E. x  e.  X  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( G `
  ( f  |`  y ) ) ) }   =>    |-  ( H  e.  V  ->  ( H  e.  A  <->  E. z  e.  X  ( H  Fn  z  /\  A. w  e.  z  ( H `  w )  =  ( G `  ( H  |`  w ) ) ) ) )
 
Theoremtfr1onlem3 6141* Lemma for transfinite recursion. This lemma changes some bound variables in  A (version of tfrlem3 6114 but for tfr1on 6153 related lemmas). (Contributed by Jim Kingdon, 14-Mar-2022.)
 |-  A  =  { f  |  E. x  e.  X  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( G `
  ( f  |`  y ) ) ) }   =>    |-  A  =  { g  |  E. z  e.  X  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) }
 
Theoremtfr1onlemssrecs 6142* Lemma for tfr1on 6153. The union of functions acceptable for tfr1on 6153 is a subset of recs. (Contributed by Jim Kingdon, 15-Mar-2022.)
 |-  A  =  { f  |  E. x  e.  X  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
 )  =  ( G `
  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  Ord 
 X )   =>    |-  ( ph  ->  U. A  C_ recs
 ( G ) )
 
Theoremtfr1onlemsucfn 6143* We can extend an acceptable function by one element to produce a function. Lemma for tfr1on 6153. (Contributed by Jim Kingdon, 12-Mar-2022.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )   &    |-  A  =  { f  |  E. x  e.  X  (
 f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  z  e.  X )   &    |-  ( ph  ->  g  Fn  z )   &    |-  ( ph  ->  g  e.  A )   =>    |-  ( ph  ->  ( g  u.  { <. z ,  ( G `  g ) >. } )  Fn  suc  z )
 
Theoremtfr1onlemsucaccv 6144* Lemma for tfr1on 6153. We can extend an acceptable function by one element to produce an acceptable function. (Contributed by Jim Kingdon, 12-Mar-2022.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )   &    |-  A  =  { f  |  E. x  e.  X  (
 f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  Y  e.  X )   &    |-  ( ph  ->  z  e.  Y )   &    |-  ( ( ph  /\  x  e.  U. X )  ->  suc  x  e.  X )   &    |-  ( ph  ->  g  Fn  z )   &    |-  ( ph  ->  g  e.  A )   =>    |-  ( ph  ->  (
 g  u.  { <. z ,  ( G `  g ) >. } )  e.  A )
 
Theoremtfr1onlembacc 6145* Lemma for tfr1on 6153. Each element of  B is an acceptable function. (Contributed by Jim Kingdon, 14-Mar-2022.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )   &    |-  A  =  { f  |  E. x  e.  X  (
 f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }   &    |-  B  =  { h  |  E. z  e.  D  E. g
 ( g  Fn  z  /\  g  e.  A  /\  h  =  (
 g  u.  { <. z ,  ( G `  g ) >. } )
 ) }   &    |-  ( ( ph  /\  x  e.  U. X )  ->  suc  x  e.  X )   &    |-  ( ph  ->  D  e.  X )   &    |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )   =>    |-  ( ph  ->  B  C_  A )
 
Theoremtfr1onlembxssdm 6146* Lemma for tfr1on 6153. The union of  B is defined on all elements of  X. (Contributed by Jim Kingdon, 14-Mar-2022.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )   &    |-  A  =  { f  |  E. x  e.  X  (
 f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }   &    |-  B  =  { h  |  E. z  e.  D  E. g
 ( g  Fn  z  /\  g  e.  A  /\  h  =  (
 g  u.  { <. z ,  ( G `  g ) >. } )
 ) }   &    |-  ( ( ph  /\  x  e.  U. X )  ->  suc  x  e.  X )   &    |-  ( ph  ->  D  e.  X )   &    |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )   =>    |-  ( ph  ->  D  C_ 
 dom  U. B )
 
Theoremtfr1onlembfn 6147* Lemma for tfr1on 6153. The union of  B is a function defined on  x. (Contributed by Jim Kingdon, 15-Mar-2022.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )   &    |-  A  =  { f  |  E. x  e.  X  (
 f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }   &    |-  B  =  { h  |  E. z  e.  D  E. g
 ( g  Fn  z  /\  g  e.  A  /\  h  =  (
 g  u.  { <. z ,  ( G `  g ) >. } )
 ) }   &    |-  ( ( ph  /\  x  e.  U. X )  ->  suc  x  e.  X )   &    |-  ( ph  ->  D  e.  X )   &    |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )   =>    |-  ( ph  ->  U. B  Fn  D )
 
Theoremtfr1onlembex 6148* Lemma for tfr1on 6153. The set  B exists. (Contributed by Jim Kingdon, 14-Mar-2022.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )   &    |-  A  =  { f  |  E. x  e.  X  (
 f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }   &    |-  B  =  { h  |  E. z  e.  D  E. g
 ( g  Fn  z  /\  g  e.  A  /\  h  =  (
 g  u.  { <. z ,  ( G `  g ) >. } )
 ) }   &    |-  ( ( ph  /\  x  e.  U. X )  ->  suc  x  e.  X )   &    |-  ( ph  ->  D  e.  X )   &    |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )   =>    |-  ( ph  ->  B  e.  _V )
 
Theoremtfr1onlemubacc 6149* Lemma for tfr1on 6153. The union of  B satisfies the recursion rule. (Contributed by Jim Kingdon, 15-Mar-2022.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )   &    |-  A  =  { f  |  E. x  e.  X  (
 f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }   &    |-  B  =  { h  |  E. z  e.  D  E. g
 ( g  Fn  z  /\  g  e.  A  /\  h  =  (
 g  u.  { <. z ,  ( G `  g ) >. } )
 ) }   &    |-  ( ( ph  /\  x  e.  U. X )  ->  suc  x  e.  X )   &    |-  ( ph  ->  D  e.  X )   &    |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )   =>    |-  ( ph  ->  A. u  e.  D  ( U. B `  u )  =  ( G `  ( U. B  |`  u ) ) )
 
Theoremtfr1onlemex 6150* Lemma for tfr1on 6153. (Contributed by Jim Kingdon, 16-Mar-2022.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )   &    |-  A  =  { f  |  E. x  e.  X  (
 f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }   &    |-  B  =  { h  |  E. z  e.  D  E. g
 ( g  Fn  z  /\  g  e.  A  /\  h  =  (
 g  u.  { <. z ,  ( G `  g ) >. } )
 ) }   &    |-  ( ( ph  /\  x  e.  U. X )  ->  suc  x  e.  X )   &    |-  ( ph  ->  D  e.  X )   &    |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )   =>    |-  ( ph  ->  E. f
 ( f  Fn  D  /\  A. u  e.  D  ( f `  u )  =  ( G `  ( f  |`  u ) ) ) )
 
Theoremtfr1onlemaccex 6151* We can define an acceptable function on any element of  X.

As with many of the transfinite recursion theorems, we have hypotheses that state that  F is a function and that it is defined up to  X. (Contributed by Jim Kingdon, 16-Mar-2022.)

 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )   &    |-  A  =  { f  |  E. x  e.  X  (
 f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }   &    |-  (
 ( ph  /\  x  e. 
 U. X )  ->  suc  x  e.  X )   =>    |-  ( ( ph  /\  C  e.  X )  ->  E. g
 ( g  Fn  C  /\  A. u  e.  C  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) )
 
Theoremtfr1onlemres 6152* Lemma for tfr1on 6153. Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 18-Mar-2022.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )   &    |-  A  =  { f  |  E. x  e.  X  (
 f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }   &    |-  (
 ( ph  /\  x  e. 
 U. X )  ->  suc  x  e.  X )   &    |-  ( ph  ->  Y  e.  X )   =>    |-  ( ph  ->  Y  C_ 
 dom  F )
 
Theoremtfr1on 6153* Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 12-Mar-2022.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f  Fn  x )  ->  ( G `  f )  e.  _V )   &    |-  (
 ( ph  /\  x  e. 
 U. X )  ->  suc  x  e.  X )   &    |-  ( ph  ->  Y  e.  X )   =>    |-  ( ph  ->  Y  C_ 
 dom  F )
 
Theoremtfri1dALT 6154* Alternate proof of tfri1d 6138 in terms of tfr1on 6153.

Although this does show that the tfr1on 6153 proof is general enough to also prove tfri1d 6138, the tfri1d 6138 proof is simpler in places because it does not need to deal with 
X being any ordinal. For that reason, we have both proofs. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by Jim Kingdon, 20-Mar-2022.)

 |-  F  = recs ( G )   &    |-  ( ph  ->  A. x ( Fun  G  /\  ( G `  x )  e.  _V )
 )   =>    |-  ( ph  ->  F  Fn  On )
 
Theoremtfrcllemssrecs 6155* Lemma for tfrcl 6167. The union of functions acceptable for tfrcl 6167 is a subset of recs. (Contributed by Jim Kingdon, 25-Mar-2022.)
 |-  A  =  { f  |  E. x  e.  X  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  Ord 
 X )   =>    |-  ( ph  ->  U. A  C_ recs
 ( G ) )
 
Theoremtfrcllemsucfn 6156* We can extend an acceptable function by one element to produce a function. Lemma for tfrcl 6167. (Contributed by Jim Kingdon, 24-Mar-2022.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f : x --> S ) 
 ->  ( G `  f
 )  e.  S )   &    |-  A  =  { f  |  E. x  e.  X  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  z  e.  X )   &    |-  ( ph  ->  g : z --> S )   &    |-  ( ph  ->  g  e.  A )   =>    |-  ( ph  ->  ( g  u.  { <. z ,  ( G `  g ) >. } ) : suc  z --> S )
 
Theoremtfrcllemsucaccv 6157* Lemma for tfrcl 6167. We can extend an acceptable function by one element to produce an acceptable function. (Contributed by Jim Kingdon, 24-Mar-2022.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f : x --> S ) 
 ->  ( G `  f
 )  e.  S )   &    |-  A  =  { f  |  E. x  e.  X  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }   &    |-  ( ph  ->  Y  e.  X )   &    |-  ( ph  ->  z  e.  Y )   &    |-  ( ( ph  /\  x  e.  U. X )  ->  suc  x  e.  X )   &    |-  ( ph  ->  g :
 z --> S )   &    |-  ( ph  ->  g  e.  A )   =>    |-  ( ph  ->  (
 g  u.  { <. z ,  ( G `  g ) >. } )  e.  A )
 
Theoremtfrcllembacc 6158* Lemma for tfrcl 6167. Each element of  B is an acceptable function. (Contributed by Jim Kingdon, 25-Mar-2022.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f : x --> S ) 
 ->  ( G `  f
 )  e.  S )   &    |-  A  =  { f  |  E. x  e.  X  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }   &    |-  B  =  { h  |  E. z  e.  D  E. g ( g : z --> S  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g ) >. } ) ) }   &    |-  (
 ( ph  /\  x  e. 
 U. X )  ->  suc  x  e.  X )   &    |-  ( ph  ->  D  e.  X )   &    |-  ( ph  ->  A. z  e.  D  E. g ( g : z --> S  /\  A. w  e.  z  (
 g `  w )  =  ( G `  (
 g  |`  w ) ) ) )   =>    |-  ( ph  ->  B  C_  A )
 
Theoremtfrcllembxssdm 6159* Lemma for tfrcl 6167. The union of  B is defined on all elements of  X. (Contributed by Jim Kingdon, 25-Mar-2022.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f : x --> S ) 
 ->  ( G `  f
 )  e.  S )   &    |-  A  =  { f  |  E. x  e.  X  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }   &    |-  B  =  { h  |  E. z  e.  D  E. g ( g : z --> S  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g ) >. } ) ) }   &    |-  (
 ( ph  /\  x  e. 
 U. X )  ->  suc  x  e.  X )   &    |-  ( ph  ->  D  e.  X )   &    |-  ( ph  ->  A. z  e.  D  E. g ( g : z --> S  /\  A. w  e.  z  (
 g `  w )  =  ( G `  (
 g  |`  w ) ) ) )   =>    |-  ( ph  ->  D  C_ 
 dom  U. B )
 
Theoremtfrcllembfn 6160* Lemma for tfrcl 6167. The union of  B is a function defined on  x. (Contributed by Jim Kingdon, 25-Mar-2022.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f : x --> S ) 
 ->  ( G `  f
 )  e.  S )   &    |-  A  =  { f  |  E. x  e.  X  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }   &    |-  B  =  { h  |  E. z  e.  D  E. g ( g : z --> S  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g ) >. } ) ) }   &    |-  (
 ( ph  /\  x  e. 
 U. X )  ->  suc  x  e.  X )   &    |-  ( ph  ->  D  e.  X )   &    |-  ( ph  ->  A. z  e.  D  E. g ( g : z --> S  /\  A. w  e.  z  (
 g `  w )  =  ( G `  (
 g  |`  w ) ) ) )   =>    |-  ( ph  ->  U. B : D --> S )
 
Theoremtfrcllembex 6161* Lemma for tfrcl 6167. The set  B exists. (Contributed by Jim Kingdon, 25-Mar-2022.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f : x --> S ) 
 ->  ( G `  f
 )  e.  S )   &    |-  A  =  { f  |  E. x  e.  X  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }   &    |-  B  =  { h  |  E. z  e.  D  E. g ( g : z --> S  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g ) >. } ) ) }   &    |-  (
 ( ph  /\  x  e. 
 U. X )  ->  suc  x  e.  X )   &    |-  ( ph  ->  D  e.  X )   &    |-  ( ph  ->  A. z  e.  D  E. g ( g : z --> S  /\  A. w  e.  z  (
 g `  w )  =  ( G `  (
 g  |`  w ) ) ) )   =>    |-  ( ph  ->  B  e.  _V )
 
Theoremtfrcllemubacc 6162* Lemma for tfrcl 6167. The union of  B satisfies the recursion rule. (Contributed by Jim Kingdon, 25-Mar-2022.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f : x --> S ) 
 ->  ( G `  f
 )  e.  S )   &    |-  A  =  { f  |  E. x  e.  X  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }   &    |-  B  =  { h  |  E. z  e.  D  E. g ( g : z --> S  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g ) >. } ) ) }   &    |-  (
 ( ph  /\  x  e. 
 U. X )  ->  suc  x  e.  X )   &    |-  ( ph  ->  D  e.  X )   &    |-  ( ph  ->  A. z  e.  D  E. g ( g : z --> S  /\  A. w  e.  z  (
 g `  w )  =  ( G `  (
 g  |`  w ) ) ) )   =>    |-  ( ph  ->  A. u  e.  D  ( U. B `  u )  =  ( G `  ( U. B  |`  u ) ) )
 
Theoremtfrcllemex 6163* Lemma for tfrcl 6167. (Contributed by Jim Kingdon, 26-Mar-2022.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f : x --> S ) 
 ->  ( G `  f
 )  e.  S )   &    |-  A  =  { f  |  E. x  e.  X  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }   &    |-  B  =  { h  |  E. z  e.  D  E. g ( g : z --> S  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g ) >. } ) ) }   &    |-  (
 ( ph  /\  x  e. 
 U. X )  ->  suc  x  e.  X )   &    |-  ( ph  ->  D  e.  X )   &    |-  ( ph  ->  A. z  e.  D  E. g ( g : z --> S  /\  A. w  e.  z  (
 g `  w )  =  ( G `  (
 g  |`  w ) ) ) )   =>    |-  ( ph  ->  E. f
 ( f : D --> S  /\  A. u  e.  D  ( f `  u )  =  ( G `  ( f  |`  u ) ) ) )
 
Theoremtfrcllemaccex 6164* We can define an acceptable function on any element of  X.

As with many of the transfinite recursion theorems, we have hypotheses that state that  F is a function and that it is defined up to  X. (Contributed by Jim Kingdon, 26-Mar-2022.)

 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f : x --> S ) 
 ->  ( G `  f
 )  e.  S )   &    |-  A  =  { f  |  E. x  e.  X  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }   &    |-  ( ( ph  /\  x  e.  U. X )  ->  suc  x  e.  X )   =>    |-  ( ( ph  /\  C  e.  X )  ->  E. g
 ( g : C --> S  /\  A. u  e.  C  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) )
 
Theoremtfrcllemres 6165* Lemma for tfr1on 6153. Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 18-Mar-2022.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f : x --> S ) 
 ->  ( G `  f
 )  e.  S )   &    |-  A  =  { f  |  E. x  e.  X  ( f : x --> S  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }   &    |-  ( ( ph  /\  x  e.  U. X )  ->  suc  x  e.  X )   &    |-  ( ph  ->  Y  e.  X )   =>    |-  ( ph  ->  Y 
 C_  dom  F )
 
Theoremtfrcldm 6166* Recursion is defined on an ordinal if the characteristic function satisfies a closure hypothesis up to a suitable point. (Contributed by Jim Kingdon, 26-Mar-2022.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f : x --> S ) 
 ->  ( G `  f
 )  e.  S )   &    |-  ( ( ph  /\  x  e.  U. X )  ->  suc  x  e.  X )   &    |-  ( ph  ->  Y  e.  U. X )   =>    |-  ( ph  ->  Y  e.  dom  F )
 
Theoremtfrcl 6167* Closure for transfinite recursion. As with tfr1on 6153, the characteristic function must be defined up to a suitable point, not necessarily on all ordinals. (Contributed by Jim Kingdon, 25-Mar-2022.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  Fun 
 G )   &    |-  ( ph  ->  Ord 
 X )   &    |-  ( ( ph  /\  x  e.  X  /\  f : x --> S ) 
 ->  ( G `  f
 )  e.  S )   &    |-  ( ( ph  /\  x  e.  U. X )  ->  suc  x  e.  X )   &    |-  ( ph  ->  Y  e.  U. X )   =>    |-  ( ph  ->  ( F `  Y )  e.  S )
 
Theoremtfri1 6168* Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47, with an additional condition.

The condition is that  G is defined "everywhere", which is stated here as  ( G `  x )  e.  _V. Alternately,  A. x  e.  On A. f ( f  Fn  x  -> 
f  e.  dom  G
) would suffice.

Given a function  G satisfying that condition, we define a class  A of all "acceptable" functions. The final function we're interested in is the union 
F  = recs ( G ) of them.  F is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of  F. In this first part we show that  F is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.)

 |-  F  = recs ( G )   &    |-  ( Fun  G  /\  ( G `  x )  e.  _V )   =>    |-  F  Fn  On
 
Theoremtfri2 6169* Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule  G ( as described at tfri1 6168). Here we show that the function  F has the property that for any function  G satisfying that condition, the "next" value of  F is  G recursively applied to all "previous" values of  F. (Contributed by Jim Kingdon, 4-May-2019.)
 |-  F  = recs ( G )   &    |-  ( Fun  G  /\  ( G `  x )  e.  _V )   =>    |-  ( A  e.  On  ->  ( F `  A )  =  ( G `  ( F  |`  A ) ) )
 
Theoremtfri3 6170* Principle of Transfinite Recursion, part 3 of 3. Theorem 7.41(3) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule  G ( as described at tfri1 6168). Finally, we show that  F is unique. We do this by showing that any class  B with the same properties of  F that we showed in parts 1 and 2 is identical to  F. (Contributed by Jim Kingdon, 4-May-2019.)
 |-  F  = recs ( G )   &    |-  ( Fun  G  /\  ( G `  x )  e.  _V )   =>    |-  (
 ( B  Fn  On  /\ 
 A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  B  =  F )
 
Theoremtfrex 6171* The transfinite recursion function is set-like if the input is. (Contributed by Mario Carneiro, 3-Jul-2019.)
 |-  F  = recs ( G )   &    |-  ( ph  ->  A. x ( Fun  G  /\  ( G `  x )  e.  _V )
 )   =>    |-  ( ( ph  /\  A  e.  V )  ->  ( F `  A )  e. 
 _V )
 
2.6.20  Recursive definition generator
 
Syntaxcrdg 6172 Extend class notation with the recursive definition generator, with characteristic function  F and initial value  I.
 class  rec ( F ,  I
 )
 
Definitiondf-irdg 6173* Define a recursive definition generator on  On (the class of ordinal numbers) with characteristic function  F and initial value  I. This rather amazing operation allows us to define, with compact direct definitions, functions that are usually defined in textbooks only with indirect self-referencing recursive definitions. A recursive definition requires advanced metalogic to justify - in particular, eliminating a recursive definition is very difficult and often not even shown in textbooks. On the other hand, the elimination of a direct definition is a matter of simple mechanical substitution. The price paid is the daunting complexity of our 
rec operation (especially when df-recs 6108 that it is built on is also eliminated). But once we get past this hurdle, definitions that would otherwise be recursive become relatively simple. In classical logic it would be easier to divide this definition into cases based on whether the domain of  g is zero, a successor, or a limit ordinal. Cases do not (in general) work that way in intuitionistic logic, so instead we choose a definition which takes the union of all the results of the characteristic function for ordinals in the domain of  g. This means that this definition has the expected properties for increasing and continuous ordinal functions, which include ordinal addition and multiplication.

For finite recursion we also define df-frec 6194 and for suitable characteristic functions df-frec 6194 yields the same result as  rec restricted to  om, as seen at frecrdg 6211.

Note: We introduce 
rec with the philosophical goal of being able to eliminate all definitions with direct mechanical substitution and to verify easily the soundness of definitions. Metamath itself has no built-in technical limitation that prevents multiple-part recursive definitions in the traditional textbook style. (Contributed by Jim Kingdon, 19-May-2019.)

 |- 
 rec ( F ,  I )  = recs (
 ( g  e.  _V  |->  ( I  u.  U_ x  e.  dom  g ( F `
  ( g `  x ) ) ) ) )
 
Theoremrdgeq1 6174 Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
 |-  ( F  =  G  ->  rec ( F ,  A )  =  rec ( G ,  A ) )
 
Theoremrdgeq2 6175 Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
 |-  ( A  =  B  ->  rec ( F ,  A )  =  rec ( F ,  B ) )
 
Theoremrdgfun 6176 The recursive definition generator is a function. (Contributed by Mario Carneiro, 16-Nov-2014.)
 |- 
 Fun  rec ( F ,  A )
 
Theoremrdgtfr 6177* The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 14-May-2020.)
 |-  ( ( A. z
 ( F `  z
 )  e.  _V  /\  A  e.  V )  ->  ( Fun  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `  ( g `  x ) ) ) ) 
 /\  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `  ( g `  x ) ) ) ) `
  f )  e. 
 _V ) )
 
Theoremrdgruledefgg 6178* The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 4-Jul-2019.)
 |-  ( ( F  Fn  _V 
 /\  A  e.  V )  ->  ( Fun  (
 g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
  ( g `  x ) ) ) )  /\  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
  ( g `  x ) ) ) ) `  f )  e.  _V ) )
 
Theoremrdgruledefg 6179* The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 4-Jul-2019.)
 |-  F  Fn  _V   =>    |-  ( A  e.  V  ->  ( Fun  (
 g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
  ( g `  x ) ) ) )  /\  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
  ( g `  x ) ) ) ) `  f )  e.  _V ) )
 
Theoremrdgexggg 6180 The recursive definition generator produces a set on a set input. (Contributed by Jim Kingdon, 4-Jul-2019.)
 |-  ( ( F  Fn  _V 
 /\  A  e.  V  /\  B  e.  W ) 
 ->  ( rec ( F ,  A ) `  B )  e.  _V )
 
Theoremrdgexgg 6181 The recursive definition generator produces a set on a set input. (Contributed by Jim Kingdon, 4-Jul-2019.)
 |-  F  Fn  _V   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( rec ( F ,  A ) `  B )  e. 
 _V )
 
Theoremrdgifnon 6182 The recursive definition generator is a function on ordinal numbers. The  F  Fn  _V condition states that the characteristic function is defined for all sets (being defined for all ordinals might be enough if being used in a manner similar to rdgon 6189; in cases like df-oadd 6223 either presumably could work). (Contributed by Jim Kingdon, 13-Jul-2019.)
 |-  ( ( F  Fn  _V 
 /\  A  e.  V )  ->  rec ( F ,  A )  Fn  On )
 
Theoremrdgifnon2 6183* The recursive definition generator is a function on ordinal numbers. (Contributed by Jim Kingdon, 14-May-2020.)
 |-  ( ( A. z
 ( F `  z
 )  e.  _V  /\  A  e.  V )  ->  rec ( F ,  A )  Fn  On )
 
Theoremrdgivallem 6184* Value of the recursive definition generator. Lemma for rdgival 6185 which simplifies the value further. (Contributed by Jim Kingdon, 13-Jul-2019.) (New usage is discouraged.)
 |-  ( ( F  Fn  _V 
 /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( ( rec ( F ,  A )  |`  B ) `
  x ) ) ) )
 
Theoremrdgival 6185* Value of the recursive definition generator. (Contributed by Jim Kingdon, 26-Jul-2019.)
 |-  ( ( F  Fn  _V 
 /\  A  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  =  ( A  u.  U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) ) ) )
 
Theoremrdgss 6186 Subset and recursive definition generator. (Contributed by Jim Kingdon, 15-Jul-2019.)
 |-  ( ph  ->  F  Fn  _V )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  A  e.  On )   &    |-  ( ph  ->  B  e.  On )   &    |-  ( ph  ->  A 
 C_  B )   =>    |-  ( ph  ->  ( rec ( F ,  I ) `  A )  C_  ( rec ( F ,  I ) `  B ) )
 
Theoremrdgisuc1 6187* One way of describing the value of the recursive definition generator at a successor. There is no condition on the characteristic function  F other than  F  Fn  _V. Given that, the resulting expression encompasses both the expected successor term  ( F `  ( rec ( F ,  A ) `  B
) ) but also terms that correspond to the initial value  A and to limit ordinals  U_ x  e.  B ( F `  ( rec ( F ,  A ) `  x
) ).

If we add conditions on the characteristic function, we can show tighter results such as rdgisucinc 6188. (Contributed by Jim Kingdon, 9-Jun-2019.)

 |-  ( ph  ->  F  Fn  _V )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  On )   =>    |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( A  u.  ( U_ x  e.  B  ( F `  ( rec ( F ,  A ) `  x ) )  u.  ( F `  ( rec ( F ,  A ) `  B ) ) ) ) )
 
Theoremrdgisucinc 6188* Value of the recursive definition generator at a successor.

This can be thought of as a generalization of oasuc 6265 and omsuc 6273. (Contributed by Jim Kingdon, 29-Aug-2019.)

 |-  ( ph  ->  F  Fn  _V )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  On )   &    |-  ( ph  ->  A. x  x  C_  ( F `  x ) )   =>    |-  ( ph  ->  ( rec ( F ,  A ) `  suc  B )  =  ( F `
  ( rec ( F ,  A ) `  B ) ) )
 
Theoremrdgon 6189* Evaluating the recursive definition generator produces an ordinal. There is a hypothesis that the characteristic function produces ordinals on ordinal arguments. (Contributed by Jim Kingdon, 26-Jul-2019.) (Revised by Jim Kingdon, 13-Apr-2022.)
 |-  ( ph  ->  A  e.  On )   &    |-  ( ph  ->  A. x  e.  On  ( F `  x )  e. 
 On )   =>    |-  ( ( ph  /\  B  e.  On )  ->  ( rec ( F ,  A ) `  B )  e. 
 On )
 
Theoremrdg0 6190 The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
 |-  A  e.  _V   =>    |-  ( rec ( F ,  A ) `  (/) )  =  A
 
Theoremrdg0g 6191 The initial value of the recursive definition generator. (Contributed by NM, 25-Apr-1995.)
 |-  ( A  e.  C  ->  ( rec ( F ,  A ) `  (/) )  =  A )
 
Theoremrdgexg 6192 The recursive definition generator produces a set on a set input. (Contributed by Mario Carneiro, 3-Jul-2019.)
 |-  A  e.  _V   &    |-  F  Fn  _V   =>    |-  ( B  e.  V  ->  ( rec ( F ,  A ) `  B )  e.  _V )
 
2.6.21  Finite recursion
 
Syntaxcfrec 6193 Extend class notation with the finite recursive definition generator, with characteristic function  F and initial value  I.
 class frec ( F ,  I )
 
Definitiondf-frec 6194* Define a recursive definition generator on  om (the class of finite ordinals) with characteristic function  F and initial value  I. This rather amazing operation allows us to define, with compact direct definitions, functions that are usually defined in textbooks only with indirect self-referencing recursive definitions. A recursive definition requires advanced metalogic to justify - in particular, eliminating a recursive definition is very difficult and often not even shown in textbooks. On the other hand, the elimination of a direct definition is a matter of simple mechanical substitution. The price paid is the daunting complexity of our frec operation (especially when df-recs 6108 that it is built on is also eliminated). But once we get past this hurdle, definitions that would otherwise be recursive become relatively simple; see frec0g 6200 and frecsuc 6210.

Unlike with transfinite recursion, finite recurson can readily divide definitions and proofs into zero and successor cases, because even without excluded middle we have theorems such as nn0suc 4447. The analogous situation with transfinite recursion - being able to say that an ordinal is zero, successor, or limit - is enabled by excluded middle and thus is not available to us. For the characteristic functions which satisfy the conditions given at frecrdg 6211, this definition and df-irdg 6173 restricted to  om produce the same result.

Note: We introduce frec with the philosophical goal of being able to eliminate all definitions with direct mechanical substitution and to verify easily the soundness of definitions. Metamath itself has no built-in technical limitation that prevents multiple-part recursive definitions in the traditional textbook style. (Contributed by Mario Carneiro and Jim Kingdon, 10-Aug-2019.)

 |- frec
 ( F ,  I
 )  =  (recs (
 ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `  m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) }
 ) )  |`  om )
 
Theoremfreceq1 6195 Equality theorem for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
 |-  ( F  =  G  -> frec ( F ,  A )  = frec ( G ,  A ) )
 
Theoremfreceq2 6196 Equality theorem for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
 |-  ( A  =  B  -> frec ( F ,  A )  = frec ( F ,  B ) )
 
Theoremfrecex 6197 Finite recursion produces a set. (Contributed by Jim Kingdon, 20-Aug-2021.)
 |- frec
 ( F ,  A )  e.  _V
 
Theoremfrecfun 6198 Finite recursion produces a function. See also frecfnom 6204 which also states that the domain of that function is  om but which puts conditions on  A and  F. (Contributed by Jim Kingdon, 13-Feb-2022.)
 |- 
 Fun frec ( F ,  A )
 
Theoremnffrec 6199 Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
 |-  F/_ x F   &    |-  F/_ x A   =>    |-  F/_ xfrec ( F ,  A )
 
Theoremfrec0g 6200 The initial value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 7-May-2020.)
 |-  ( A  e.  V  ->  (frec ( F ,  A ) `  (/) )  =  A )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12636
  Copyright terms: Public domain < Previous  Next >