Theorem List for Intuitionistic Logic Explorer - 6101-6200   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | caovdirg 6101* | 
Convert an operation reverse distributive law to class notation.
         (Contributed by Mario Carneiro, 19-Oct-2014.)
 | 
            
        
        
      
                                              
        
        
      
                            | 
|   | 
| Theorem | caovdird 6102* | 
Convert an operation distributive law to class notation.  (Contributed
         by Mario Carneiro, 30-Dec-2014.)
 | 
            
        
        
      
                                                                                                                                | 
|   | 
| Theorem | caovdi 6103* | 
Convert an operation distributive law to class notation.  (Contributed
         by NM, 25-Aug-1995.)  (Revised by Mario Carneiro, 28-Jun-2013.)
 | 
                                                                                                        | 
|   | 
| Theorem | caov32d 6104* | 
Rearrange arguments in a commutative, associative operation.
         (Contributed by NM, 26-Aug-1995.)  (Revised by Mario Carneiro,
         30-Dec-2014.)
 | 
                                                                        
        
      
                                        
        
      
                                                              | 
|   | 
| Theorem | caov12d 6105* | 
Rearrange arguments in a commutative, associative operation.
         (Contributed by NM, 26-Aug-1995.)  (Revised by Mario Carneiro,
         30-Dec-2014.)
 | 
                                                                        
        
      
                                        
        
      
                                                              | 
|   | 
| Theorem | caov31d 6106* | 
Rearrange arguments in a commutative, associative operation.
         (Contributed by NM, 26-Aug-1995.)  (Revised by Mario Carneiro,
         30-Dec-2014.)
 | 
                                                                        
        
      
                                        
        
      
                                                              | 
|   | 
| Theorem | caov13d 6107* | 
Rearrange arguments in a commutative, associative operation.
         (Contributed by NM, 26-Aug-1995.)  (Revised by Mario Carneiro,
         30-Dec-2014.)
 | 
                                                                        
        
      
                                        
        
      
                                                              | 
|   | 
| Theorem | caov4d 6108* | 
Rearrange arguments in a commutative, associative operation.
           (Contributed by NM, 26-Aug-1995.)  (Revised by Mario Carneiro,
           30-Dec-2014.)
 | 
                                                                        
        
      
                                        
        
      
                                                         
                                                                             | 
|   | 
| Theorem | caov411d 6109* | 
Rearrange arguments in a commutative, associative operation.
           (Contributed by NM, 26-Aug-1995.)  (Revised by Mario Carneiro,
           30-Dec-2014.)
 | 
                                                                        
        
      
                                        
        
      
                                                         
                                                                             | 
|   | 
| Theorem | caov42d 6110* | 
Rearrange arguments in a commutative, associative operation.
           (Contributed by NM, 26-Aug-1995.)  (Revised by Mario Carneiro,
           30-Dec-2014.)
 | 
                                                                        
        
      
                                        
        
      
                                                         
                                                                             | 
|   | 
| Theorem | caov32 6111* | 
Rearrange arguments in a commutative, associative operation.
         (Contributed by NM, 26-Aug-1995.)
 | 
                                                                                                           
           | 
|   | 
| Theorem | caov12 6112* | 
Rearrange arguments in a commutative, associative operation.
         (Contributed by NM, 26-Aug-1995.)
 | 
                                                                                                                      | 
|   | 
| Theorem | caov31 6113* | 
Rearrange arguments in a commutative, associative operation.
         (Contributed by NM, 26-Aug-1995.)
 | 
                                                                                                           
           | 
|   | 
| Theorem | caov13 6114* | 
Rearrange arguments in a commutative, associative operation.
         (Contributed by NM, 26-Aug-1995.)
 | 
                                                                                                                      | 
|   | 
| Theorem | caovdilemd 6115* | 
Lemma used by real number construction.  (Contributed by Jim Kingdon,
       16-Sep-2019.)
 | 
            
        
      
                                        
        
      
                                                      
        
      
                                                  
      
                                                                                                                                                                          | 
|   | 
| Theorem | caovlem2d 6116* | 
Rearrangement of expression involving multiplication ( ) and
       addition ( ). 
(Contributed by Jim Kingdon, 3-Jan-2020.)
 | 
            
        
      
                                        
        
      
                                                      
        
      
                                                  
      
                                                                                                                                                              
      
                                          
        
      
                                                  
      
                                                                                                          | 
|   | 
| Theorem | caovimo 6117* | 
Uniqueness of inverse element in commutative, associative operation with
       identity.  The identity element is  .  (Contributed by Jim Kingdon,
       18-Sep-2019.)
 | 
                           
                                                                                             
                                                        | 
|   | 
| 2.6.12  Maps-to notation
 | 
|   | 
| Theorem | elmpocl 6118* | 
If a two-parameter class is inhabited, constrain the implicit pair.
       (Contributed by Stefan O'Rear, 7-Mar-2015.)
 | 
                                                               | 
|   | 
| Theorem | elmpocl1 6119* | 
If a two-parameter class is inhabited, the first argument is in its
       nominal domain.  (Contributed by FL, 15-Oct-2012.)  (Revised by Stefan
       O'Rear, 7-Mar-2015.)
 | 
                                                     | 
|   | 
| Theorem | elmpocl2 6120* | 
If a two-parameter class is inhabited, the second argument is in its
       nominal domain.  (Contributed by FL, 15-Oct-2012.)  (Revised by Stefan
       O'Rear, 7-Mar-2015.)
 | 
                                                     | 
|   | 
| Theorem | elovmpod 6121* | 
Utility lemma for two-parameter classes.  (Contributed by Stefan O'Rear,
       21-Jan-2015.)  Variant of elovmpo 6122 in deduction form.  (Revised by AV,
       20-Apr-2025.)
 | 
                                                                                                        
                                
          
       | 
|   | 
| Theorem | elovmpo 6122* | 
Utility lemma for two-parameter classes.  (Contributed by Stefan O'Rear,
       21-Jan-2015.)
 | 
                                                                                                                       | 
|   | 
| Theorem | elovmporab 6123* | 
Implications for the value of an operation, defined by the maps-to
       notation with a class abstraction as a result, having an element.
       (Contributed by Alexander van der Vekens, 15-Jul-2018.)
 | 
                                                                                 
             
                     | 
|   | 
| Theorem | elovmporab1w 6124* | 
Implications for the value of an operation, defined by the maps-to
       notation with a class abstraction as a result, having an element.  Here,
       the base set of the class abstraction depends on the first operand.
       (Contributed by Alexander van der Vekens, 15-Jul-2018.)  (Revised by GG,
       26-Jan-2024.)
 | 
                                 ![]_  ]_](_urbrack.gif)                                          ![]_  ]_](_urbrack.gif)                    
             
                       ![]_  ]_](_urbrack.gif)     | 
|   | 
| Theorem | f1ocnvd 6125* | 
Describe an implicit one-to-one onto function.  (Contributed by Mario
         Carneiro, 30-Apr-2015.)
 | 
                                                                                          
      
        
                  
                                               | 
|   | 
| Theorem | f1od 6126* | 
Describe an implicit one-to-one onto function.  (Contributed by Mario
         Carneiro, 12-May-2014.)
 | 
                                                                                          
      
        
                  
                          | 
|   | 
| Theorem | f1ocnv2d 6127* | 
Describe an implicit one-to-one onto function.  (Contributed by Mario
       Carneiro, 30-Apr-2015.)
 | 
                                                                                                
        
      
       
    
                                                | 
|   | 
| Theorem | f1o2d 6128* | 
Describe an implicit one-to-one onto function.  (Contributed by Mario
       Carneiro, 12-May-2014.)
 | 
                                                                                                
        
      
       
    
                           | 
|   | 
| Theorem | f1opw2 6129* | 
A one-to-one mapping induces a one-to-one mapping on power sets.  This
       version of f1opw 6130 avoids the Axiom of Replacement. 
(Contributed by
       Mario Carneiro, 26-Jun-2015.)
 | 
                                                                                                    | 
|   | 
| Theorem | f1opw 6130* | 
A one-to-one mapping induces a one-to-one mapping on power sets.
       (Contributed by Stefan O'Rear, 18-Nov-2014.)  (Revised by Mario
       Carneiro, 26-Jun-2015.)
 | 
                                   | 
|   | 
| Theorem | suppssfv 6131* | 
Formula building theorem for support restriction, on a function which
       preserves zero.  (Contributed by Stefan O'Rear, 9-Mar-2015.)
 | 
                                                                                                       
     
                          
    | 
|   | 
| Theorem | suppssov1 6132* | 
Formula building theorem for support restrictions: operator with left
       annihilator.  (Contributed by Stefan O'Rear, 9-Mar-2015.)
 | 
                                                                                                                                                                              
    | 
|   | 
| 2.6.13  Function operation
 | 
|   | 
| Syntax | cof 6133 | 
Extend class notation to include mapping of an operation to a function
     operation.
 | 
      | 
|   | 
| Syntax | cofr 6134 | 
Extend class notation to include mapping of a binary relation to a
     function relation.
 | 
      | 
|   | 
| Definition | df-of 6135* | 
Define the function operation map.  The definition is designed so that
       if   is a binary
operation, then     is the analogous operation
       on functions which corresponds to applying   pointwise to the values
       of the functions.  (Contributed by Mario Carneiro, 20-Jul-2014.)
 | 
          
       
         
                                 | 
|   | 
| Definition | df-ofr 6136* | 
Define the function relation map.  The definition is designed so that if
         is a binary
relation, then     is the analogous relation on
       functions which is true when each element of the left function relates
       to the corresponding element of the right function.  (Contributed by
       Mario Carneiro, 28-Jul-2014.)
 | 
                                               | 
|   | 
| Theorem | ofeqd 6137 | 
Equality theorem for function operation, deduction form.  (Contributed
       by SN, 11-Nov-2024.)
 | 
                                
      | 
|   | 
| Theorem | ofeq 6138 | 
Equality theorem for function operation.  (Contributed by Mario
       Carneiro, 20-Jul-2014.)
 | 
                      | 
|   | 
| Theorem | ofreq 6139 | 
Equality theorem for function relation.  (Contributed by Mario Carneiro,
       28-Jul-2014.)
 | 
                      | 
|   | 
| Theorem | ofexg 6140 | 
A function operation restricted to a set is a set.  (Contributed by NM,
       28-Jul-2014.)
 | 
                           | 
|   | 
| Theorem | nfof 6141 | 
Hypothesis builder for function operation.  (Contributed by Mario
       Carneiro, 20-Jul-2014.)
 | 
                     | 
|   | 
| Theorem | nfofr 6142 | 
Hypothesis builder for function relation.  (Contributed by Mario
       Carneiro, 28-Jul-2014.)
 | 
                     | 
|   | 
| Theorem | offval 6143* | 
Value of an operation applied to two functions.  (Contributed by Mario
         Carneiro, 20-Jul-2014.)
 | 
                                                                                                         
                                                     
                                             | 
|   | 
| Theorem | ofrfval 6144* | 
Value of a relation applied to two functions.  (Contributed by Mario
         Carneiro, 28-Jul-2014.)
 | 
                                                                                                         
                                                     
                                        | 
|   | 
| Theorem | ofvalg 6145 | 
Evaluate a function operation at a point.  (Contributed by Mario
         Carneiro, 20-Jul-2014.)  (Revised by Jim Kingdon, 22-Nov-2023.)
 | 
                                                                                                         
         
                                            
               
         
                                                   
        | 
|   | 
| Theorem | ofrval 6146 | 
Exhibit a function relation at a point.  (Contributed by Mario
         Carneiro, 28-Jul-2014.)
 | 
                                                                                                         
         
                                            
               
                          | 
|   | 
| Theorem | ofmresval 6147 | 
Value of a restriction of the function operation map.  (Contributed by
       NM, 20-Oct-2014.)
 | 
                                                                                | 
|   | 
| Theorem | off 6148* | 
The function operation produces a function.  (Contributed by Mario
       Carneiro, 20-Jul-2014.)
 | 
            
        
      
                                            
                                                                 
                              | 
|   | 
| Theorem | offeq 6149* | 
Convert an identity of the operation to the analogous identity on
           the function operation.  (Contributed by Jim Kingdon,
           26-Nov-2023.)
 | 
            
        
      
                                            
                                                                 
                                                                                       
               
                                                  
    | 
|   | 
| Theorem | ofres 6150 | 
Restrict the operands of a function operation to the same domain as that
       of the operation itself.  (Contributed by Mario Carneiro,
       15-Sep-2014.)
 | 
                                                                                                                                      
      | 
|   | 
| Theorem | offval2 6151* | 
The function operation expressed as a mapping.  (Contributed by Mario
       Carneiro, 20-Jul-2014.)
 | 
                                                                                                                    
       
                                                    | 
|   | 
| Theorem | ofrfval2 6152* | 
The function relation acting on maps.  (Contributed by Mario Carneiro,
       20-Jul-2014.)
 | 
                                                                                                                    
       
                                               | 
|   | 
| Theorem | suppssof1 6153* | 
Formula building theorem for support restrictions: vector operation with
       left annihilator.  (Contributed by Stefan O'Rear, 9-Mar-2015.)
 | 
                       
               
                                                       
                                                                    | 
|   | 
| Theorem | ofco 6154 | 
The composition of a function operation with another function.
       (Contributed by Mario Carneiro, 19-Dec-2014.)
 | 
                                                                                                                                                                   
                       | 
|   | 
| Theorem | offveqb 6155* | 
Equivalent expressions for equality with a function operation.
       (Contributed by NM, 9-Oct-2014.)  (Proof shortened by Mario Carneiro,
       5-Dec-2016.)
 | 
                                                                                                        
               
                                        
              
                     | 
|   | 
| Theorem | ofc1g 6156 | 
Left operation by a constant.  (Contributed by Mario Carneiro,
       24-Jul-2014.)
 | 
                                                                                                                      
               
         
                         
        | 
|   | 
| Theorem | ofc2g 6157 | 
Right operation by a constant.  (Contributed by NM, 7-Oct-2014.)
 | 
                                                                                                                      
               
         
                       
          | 
|   | 
| Theorem | ofc12 6158 | 
Function operation on two constant functions.  (Contributed by Mario
       Carneiro, 28-Jul-2014.)
 | 
                                                                                                             | 
|   | 
| Theorem | caofref 6159* | 
Transfer a reflexive law to the function relation.  (Contributed by
         Mario Carneiro, 28-Jul-2014.)
 | 
                                                                                   | 
|   | 
| Theorem | caofinvl 6160* | 
Transfer a left inverse law to the function operation.  (Contributed
           by NM, 22-Oct-2014.)
 | 
                                              
                                        
       
                                                                     
                       | 
|   | 
| Theorem | caofcom 6161* | 
Transfer a commutative law to the function operation.  (Contributed by
         Mario Carneiro, 26-Jul-2014.)
 | 
                                              
                                
      
                                         
           | 
|   | 
| Theorem | caofrss 6162* | 
Transfer a relation subset law to the function relation.  (Contributed
         by Mario Carneiro, 28-Jul-2014.)
 | 
                                              
                                
      
                            
                    | 
|   | 
| Theorem | caoftrn 6163* | 
Transfer a transitivity law to the function relation.  (Contributed by
         Mario Carneiro, 28-Jul-2014.)
 | 
                                              
                                              
        
        
      
                                  
                               | 
|   | 
| Theorem | caofdig 6164* | 
Transfer a distributive law to the function operation.  (Contributed
         by Mario Carneiro, 26-Jul-2014.)
 | 
                                              
                                              
        
      
                                    
      
                                      
        
      
                                                                                     | 
|   | 
| 2.6.14  Functions (continued)
 | 
|   | 
| Theorem | resfunexgALT 6165 | 
The restriction of a function to a set exists.  Compare Proposition 6.17
     of [TakeutiZaring] p. 28.  This
version has a shorter proof than
     resfunexg 5783 but requires ax-pow 4207 and ax-un 4468.  (Contributed by NM,
     7-Apr-1995.)  (Proof modification is discouraged.)
     (New usage is discouraged.)
 | 
                                | 
|   | 
| Theorem | cofunexg 6166 | 
Existence of a composition when the first member is a function.
     (Contributed by NM, 8-Oct-2007.)
 | 
                            
    | 
|   | 
| Theorem | cofunex2g 6167 | 
Existence of a composition when the second member is one-to-one.
     (Contributed by NM, 8-Oct-2007.)
 | 
             
              
      | 
|   | 
| Theorem | fnexALT 6168 | 
If the domain of a function is a set, the function is a set.  Theorem
     6.16(1) of [TakeutiZaring] p. 28. 
This theorem is derived using the Axiom
     of Replacement in the form of funimaexg 5342.  This version of fnex 5784
uses
     ax-pow 4207 and ax-un 4468, whereas fnex 5784
does not.  (Contributed by NM,
     14-Aug-1994.)  (Proof modification is discouraged.)
     (New usage is discouraged.)
 | 
                            | 
|   | 
| Theorem | funexw 6169 | 
Weak version of funex 5785 that holds without ax-coll 4148.  If the domain and
     codomain of a function exist, so does the function.  (Contributed by Rohan
     Ridenour, 13-Aug-2023.)
 | 
                                      | 
|   | 
| Theorem | mptexw 6170* | 
Weak version of mptex 5788 that holds without ax-coll 4148.  If the domain
       and codomain of a function given by maps-to notation are sets, the
       function is a set.  (Contributed by Rohan Ridenour, 13-Aug-2023.)
 | 
                                                       
            | 
|   | 
| Theorem | funrnex 6171 | 
If the domain of a function exists, so does its range.  Part of Theorem
     4.15(v) of [Monk1] p. 46.  This theorem is
derived using the Axiom of
     Replacement in the form of funex 5785.  (Contributed by NM, 11-Nov-1995.)
 | 
                              | 
|   | 
| Theorem | focdmex 6172 | 
If the domain of an onto function exists, so does its codomain.
     (Contributed by NM, 23-Jul-2004.)
 | 
                            | 
|   | 
| Theorem | f1dmex 6173 | 
If the codomain of a one-to-one function exists, so does its domain.  This
     can be thought of as a form of the Axiom of Replacement.  (Contributed by
     NM, 4-Sep-2004.)
 | 
         
         
          | 
|   | 
| Theorem | abrexex 6174* | 
Existence of a class abstraction of existentially restricted sets.  
       is normally a free-variable parameter in the class expression
       substituted for  , which can be thought of as     .  This
       simple-looking theorem is actually quite powerful and appears to involve
       the Axiom of Replacement in an intrinsic way, as can be seen by tracing
       back through the path mptexg 5787, funex 5785, fnex 5784, resfunexg 5783, and
       funimaexg 5342.  See also abrexex2 6181.  (Contributed by NM, 16-Oct-2003.)
       (Proof shortened by Mario Carneiro, 31-Aug-2015.)
 | 
                               
        | 
|   | 
| Theorem | abrexexg 6175* | 
Existence of a class abstraction of existentially restricted sets.  
       is normally a free-variable parameter in  .  The antecedent assures
       us that   is a
set.  (Contributed by NM, 3-Nov-2003.)
 | 
                    
               | 
|   | 
| Theorem | iunexg 6176* | 
The existence of an indexed union.   is normally a free-variable
       parameter in  . 
(Contributed by NM, 23-Mar-2006.)
 | 
                                      
    | 
|   | 
| Theorem | abrexex2g 6177* | 
Existence of an existentially restricted class abstraction.
       (Contributed by Jeff Madsen, 2-Sep-2009.)
 | 
                          
                            | 
|   | 
| Theorem | opabex3d 6178* | 
Existence of an ordered pair abstraction, deduction version.
       (Contributed by Alexander van der Vekens, 19-Oct-2017.)
 | 
                                                                                           | 
|   | 
| Theorem | opabex3 6179* | 
Existence of an ordered pair abstraction.  (Contributed by Jeff Madsen,
       2-Sep-2009.)
 | 
                    
                                                  
   | 
|   | 
| Theorem | iunex 6180* | 
The existence of an indexed union.   is normally a free-variable
       parameter in the class expression substituted for  , which can be
       read informally as     .  (Contributed by NM, 13-Oct-2003.)
 | 
                                
        
   | 
|   | 
| Theorem | abrexex2 6181* | 
Existence of an existentially restricted class abstraction.   is
       normally has free-variable parameters   and  .  See also
       abrexex 6174.  (Contributed by NM, 12-Sep-2004.)
 | 
                                                       | 
|   | 
| Theorem | abexssex 6182* | 
Existence of a class abstraction with an existentially quantified
       expression.  Both   and   can be
free in  . 
(Contributed
       by NM, 29-Jul-2006.)
 | 
                                                         
   | 
|   | 
| Theorem | abexex 6183* | 
A condition where a class builder continues to exist after its wff is
       existentially quantified.  (Contributed by NM, 4-Mar-2007.)
 | 
                                                                      | 
|   | 
| Theorem | oprabexd 6184* | 
Existence of an operator abstraction.  (Contributed by Jeff Madsen,
       2-Sep-2009.)
 | 
                                             
                                                        
              
                                 | 
|   | 
| Theorem | oprabex 6185* | 
Existence of an operation class abstraction.  (Contributed by NM,
       19-Oct-2004.)
 | 
                                                                              
              
                          | 
|   | 
| Theorem | oprabex3 6186* | 
Existence of an operation class abstraction (special case).
       (Contributed by NM, 19-Oct-2004.)
 | 
                                                      
                                  
                                      | 
|   | 
| Theorem | oprabrexex2 6187* | 
Existence of an existentially restricted operation abstraction.
       (Contributed by Jeff Madsen, 11-Jun-2010.)
 | 
                     
       
                                     
          | 
|   | 
| Theorem | ab2rexex 6188* | 
Existence of a class abstraction of existentially restricted sets.
       Variables   and
  are normally
free-variable parameters in the
       class expression substituted for  , which can be thought of as
              .  See comments for abrexex 6174.  (Contributed by NM,
       20-Sep-2011.)
 | 
                                       
                  
   | 
|   | 
| Theorem | ab2rexex2 6189* | 
Existence of an existentially restricted class abstraction.  
       normally has free-variable parameters  ,  , and  .
       Compare abrexex2 6181.  (Contributed by NM, 20-Sep-2011.)
 | 
                                     
                           
            | 
|   | 
| Theorem | xpexgALT 6190 | 
The cross product of two sets is a set.  Proposition 6.2 of
       [TakeutiZaring] p. 23.  This
version is proven using Replacement; see
       xpexg 4777 for a version that uses the Power Set axiom
instead.
       (Contributed by Mario Carneiro, 20-May-2013.)
       (Proof modification is discouraged.)  (New usage is discouraged.)
 | 
                            
      | 
|   | 
| Theorem | offval3 6191* | 
General value of          with no assumptions on functionality
       of   and  .  (Contributed by Stefan
O'Rear, 24-Jan-2015.)
 | 
                                                                   | 
|   | 
| Theorem | offres 6192 | 
Pointwise combination commutes with restriction.  (Contributed by Stefan
       O'Rear, 24-Jan-2015.)
 | 
                                                      
      | 
|   | 
| Theorem | ofmres 6193* | 
Equivalent expressions for a restriction of the function operation map.
       Unlike     which is a proper class,           
      can
       be a set by ofmresex 6194, allowing it to be used as a function or
       structure argument.  By ofmresval 6147, the restricted operation map
       values are the same as the original values, allowing theorems for
           to be reused.  (Contributed by NM, 20-Oct-2014.)
 | 
                  
              
               | 
|   | 
| Theorem | ofmresex 6194 | 
Existence of a restriction of the function operation map.  (Contributed
       by NM, 20-Oct-2014.)
 | 
                                                                     | 
|   | 
| Theorem | uchoice 6195* | 
Principle of unique choice.  This is also called non-choice.  The name
       choice results in its similarity to something like acfun 7274 (with the key
       difference being the change of   to  ) but unique choice in
       fact follows from the axiom of collection and our other axioms.  This is
       somewhat similar to Corollary 3.9.2 of [HoTT], p.  (varies) but is
       better described by the paragraph at the end of Section 3.9 which starts
       "A similar issue arises in set-theoretic mathematics". 
(Contributed by
       Jim Kingdon, 13-Sep-2025.)
 | 
                                         
             ![].  ].](_drbrack.gif)     | 
|   | 
| 2.6.15  First and second members of an ordered
 pair
 | 
|   | 
| Syntax | c1st 6196 | 
Extend the definition of a class to include the first member an ordered
     pair function.
 | 
    | 
|   | 
| Syntax | c2nd 6197 | 
Extend the definition of a class to include the second member an ordered
     pair function.
 | 
    | 
|   | 
| Definition | df-1st 6198 | 
Define a function that extracts the first member, or abscissa, of an
     ordered pair.  Theorem op1st 6204 proves that it does this.  For example,
     (    3 , 4  ) = 3 .  Equivalent to Definition
5.13 (i) of
     [Monk1] p. 52 (compare op1sta 5151 and op1stb 4513).  The notation is the same
     as Monk's.  (Contributed by NM, 9-Oct-2004.)
 | 
     
                  | 
|   | 
| Definition | df-2nd 6199 | 
Define a function that extracts the second member, or ordinate, of an
     ordered pair.  Theorem op2nd 6205 proves that it does this.  For example,
          3 , 4  ) = 4 .  Equivalent to Definition 5.13 (ii)
     of [Monk1] p. 52 (compare op2nda 5154 and op2ndb 5153).  The notation is the
     same as Monk's.  (Contributed by NM, 9-Oct-2004.)
 | 
     
                  | 
|   | 
| Theorem | 1stvalg 6200 | 
The value of the function that extracts the first member of an ordered
       pair.  (Contributed by NM, 9-Oct-2004.)  (Revised by Mario Carneiro,
       8-Sep-2013.)
 | 
                  
         |