HomeHome Intuitionistic Logic Explorer
Theorem List (p. 62 of 160)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6101-6200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcaovcomg 6101* Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 1-Jun-2013.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x F y )  =  ( y F x ) )   =>    |-  ( ( ph  /\  ( A  e.  S  /\  B  e.  S )
 )  ->  ( A F B )  =  ( B F A ) )
 
Theoremcaovcomd 6102* Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x F y )  =  ( y F x ) )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   =>    |-  ( ph  ->  ( A F B )  =  ( B F A ) )
 
Theoremcaovcom 6103* Convert an operation commutative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 1-Jun-2013.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( x F y )  =  ( y F x )   =>    |-  ( A F B )  =  ( B F A )
 
Theoremcaovassg 6104* Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 1-Jun-2013.) (Revised by Mario Carneiro, 26-May-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( ( x F y ) F z )  =  ( x F ( y F z ) ) )   =>    |-  ( ( ph  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  S )
 )  ->  ( ( A F B ) F C )  =  ( A F ( B F C ) ) )
 
Theoremcaovassd 6105* Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( ( x F y ) F z )  =  ( x F ( y F z ) ) )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   =>    |-  ( ph  ->  (
 ( A F B ) F C )  =  ( A F ( B F C ) ) )
 
Theoremcaovass 6106* Convert an operation associative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  (
 ( x F y ) F z )  =  ( x F ( y F z ) )   =>    |-  ( ( A F B ) F C )  =  ( A F ( B F C ) )
 
Theoremcaovcang 6107* Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  T  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( ( x F y )  =  ( x F z )  <->  y  =  z
 ) )   =>    |-  ( ( ph  /\  ( A  e.  T  /\  B  e.  S  /\  C  e.  S )
 )  ->  ( ( A F B )  =  ( A F C ) 
 <->  B  =  C ) )
 
Theoremcaovcand 6108* Convert an operation cancellation law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  T  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( ( x F y )  =  ( x F z )  <->  y  =  z
 ) )   &    |-  ( ph  ->  A  e.  T )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   =>    |-  ( ph  ->  (
 ( A F B )  =  ( A F C )  <->  B  =  C ) )
 
Theoremcaovcanrd 6109* Commute the arguments of an operation cancellation law. (Contributed by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  T  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( ( x F y )  =  ( x F z )  <->  y  =  z
 ) )   &    |-  ( ph  ->  A  e.  T )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ph  ->  A  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x F y )  =  ( y F x ) )   =>    |-  ( ph  ->  ( ( B F A )  =  ( C F A )  <->  B  =  C ) )
 
Theoremcaovcan 6110* Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995.)
 |-  C  e.  _V   &    |-  (
 ( x  e.  S  /\  y  e.  S )  ->  ( ( x F y )  =  ( x F z )  ->  y  =  z ) )   =>    |-  ( ( A  e.  S  /\  B  e.  S )  ->  (
 ( A F B )  =  ( A F C )  ->  B  =  C ) )
 
Theoremcaovordig 6111* Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 31-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( x R y  ->  ( z F x ) R ( z F y ) ) )   =>    |-  ( ( ph  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  S )
 )  ->  ( A R B  ->  ( C F A ) R ( C F B ) ) )
 
Theoremcaovordid 6112* Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 31-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( x R y  ->  ( z F x ) R ( z F y ) ) )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   =>    |-  ( ph  ->  ( A R B  ->  ( C F A ) R ( C F B ) ) )
 
Theoremcaovordg 6113* Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( x R y  <->  ( z F x ) R ( z F y ) ) )   =>    |-  ( ( ph  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  S )
 )  ->  ( A R B  <->  ( C F A ) R ( C F B ) ) )
 
Theoremcaovordd 6114* Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( x R y  <->  ( z F x ) R ( z F y ) ) )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   =>    |-  ( ph  ->  ( A R B  <->  ( C F A ) R ( C F B ) ) )
 
Theoremcaovord2d 6115* Operation ordering law with commuted arguments. (Contributed by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( x R y  <->  ( z F x ) R ( z F y ) ) )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x F y )  =  ( y F x ) )   =>    |-  ( ph  ->  ( A R B  <->  ( A F C ) R ( B F C ) ) )
 
Theoremcaovord3d 6116* Ordering law. (Contributed by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( x R y  <->  ( z F x ) R ( z F y ) ) )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x F y )  =  ( y F x ) )   &    |-  ( ph  ->  D  e.  S )   =>    |-  ( ph  ->  ( ( A F B )  =  ( C F D )  ->  ( A R C  <->  D R B ) ) )
 
Theoremcaovord 6117* Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( z  e.  S  ->  ( x R y  <->  ( z F x ) R ( z F y ) ) )   =>    |-  ( C  e.  S  ->  ( A R B  <->  ( C F A ) R ( C F B ) ) )
 
Theoremcaovord2 6118* Operation ordering law with commuted arguments. (Contributed by NM, 27-Feb-1996.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( z  e.  S  ->  ( x R y  <->  ( z F x ) R ( z F y ) ) )   &    |-  C  e.  _V   &    |-  ( x F y )  =  ( y F x )   =>    |-  ( C  e.  S  ->  ( A R B  <->  ( A F C ) R ( B F C ) ) )
 
Theoremcaovord3 6119* Ordering law. (Contributed by NM, 29-Feb-1996.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( z  e.  S  ->  ( x R y  <->  ( z F x ) R ( z F y ) ) )   &    |-  C  e.  _V   &    |-  ( x F y )  =  ( y F x )   &    |-  D  e.  _V   =>    |-  (
 ( ( B  e.  S  /\  C  e.  S )  /\  ( A F B )  =  ( C F D ) ) 
 ->  ( A R C  <->  D R B ) )
 
Theoremcaovdig 6120* Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 26-Jul-2014.)
 |-  ( ( ph  /\  ( x  e.  K  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( x G ( y F z ) )  =  ( ( x G y ) H ( x G z ) ) )   =>    |-  ( ( ph  /\  ( A  e.  K  /\  B  e.  S  /\  C  e.  S )
 )  ->  ( A G ( B F C ) )  =  ( ( A G B ) H ( A G C ) ) )
 
Theoremcaovdid 6121* Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  K  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( x G ( y F z ) )  =  ( ( x G y ) H ( x G z ) ) )   &    |-  ( ph  ->  A  e.  K )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   =>    |-  ( ph  ->  ( A G ( B F C ) )  =  ( ( A G B ) H ( A G C ) ) )
 
Theoremcaovdir2d 6122* Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( x G ( y F z ) )  =  ( ( x G y ) F ( x G z ) ) )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x G y )  =  ( y G x ) )   =>    |-  ( ph  ->  (
 ( A F B ) G C )  =  ( ( A G C ) F ( B G C ) ) )
 
Theoremcaovdirg 6123* Convert an operation reverse distributive law to class notation. (Contributed by Mario Carneiro, 19-Oct-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  K )
 )  ->  ( ( x F y ) G z )  =  ( ( x G z ) H ( y G z ) ) )   =>    |-  ( ( ph  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  K )
 )  ->  ( ( A F B ) G C )  =  ( ( A G C ) H ( B G C ) ) )
 
Theoremcaovdird 6124* Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  K )
 )  ->  ( ( x F y ) G z )  =  ( ( x G z ) H ( y G z ) ) )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  K )   =>    |-  ( ph  ->  (
 ( A F B ) G C )  =  ( ( A G C ) H ( B G C ) ) )
 
Theoremcaovdi 6125* Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 28-Jun-2013.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  ( x G ( y F z ) )  =  ( ( x G y ) F ( x G z ) )   =>    |-  ( A G ( B F C ) )  =  ( ( A G B ) F ( A G C ) )
 
Theoremcaov32d 6126* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x F y )  =  ( y F x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x F y ) F z )  =  ( x F ( y F z ) ) )   =>    |-  ( ph  ->  (
 ( A F B ) F C )  =  ( ( A F C ) F B ) )
 
Theoremcaov12d 6127* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x F y )  =  ( y F x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x F y ) F z )  =  ( x F ( y F z ) ) )   =>    |-  ( ph  ->  ( A F ( B F C ) )  =  ( B F ( A F C ) ) )
 
Theoremcaov31d 6128* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x F y )  =  ( y F x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x F y ) F z )  =  ( x F ( y F z ) ) )   =>    |-  ( ph  ->  (
 ( A F B ) F C )  =  ( ( C F B ) F A ) )
 
Theoremcaov13d 6129* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x F y )  =  ( y F x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x F y ) F z )  =  ( x F ( y F z ) ) )   =>    |-  ( ph  ->  ( A F ( B F C ) )  =  ( C F ( B F A ) ) )
 
Theoremcaov4d 6130* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x F y )  =  ( y F x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x F y ) F z )  =  ( x F ( y F z ) ) )   &    |-  ( ph  ->  D  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   =>    |-  ( ph  ->  ( ( A F B ) F ( C F D ) )  =  ( ( A F C ) F ( B F D ) ) )
 
Theoremcaov411d 6131* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x F y )  =  ( y F x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x F y ) F z )  =  ( x F ( y F z ) ) )   &    |-  ( ph  ->  D  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   =>    |-  ( ph  ->  ( ( A F B ) F ( C F D ) )  =  ( ( C F B ) F ( A F D ) ) )
 
Theoremcaov42d 6132* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
 |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x F y )  =  ( y F x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x F y ) F z )  =  ( x F ( y F z ) ) )   &    |-  ( ph  ->  D  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   =>    |-  ( ph  ->  ( ( A F B ) F ( C F D ) )  =  ( ( A F C ) F ( D F B ) ) )
 
Theoremcaov32 6133* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  ( x F y )  =  ( y F x )   &    |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )   =>    |-  ( ( A F B ) F C )  =  ( ( A F C ) F B )
 
Theoremcaov12 6134* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  ( x F y )  =  ( y F x )   &    |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )   =>    |-  ( A F ( B F C ) )  =  ( B F ( A F C ) )
 
Theoremcaov31 6135* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  ( x F y )  =  ( y F x )   &    |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )   =>    |-  ( ( A F B ) F C )  =  ( ( C F B ) F A )
 
Theoremcaov13 6136* Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  ( x F y )  =  ( y F x )   &    |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )   =>    |-  ( A F ( B F C ) )  =  ( C F ( B F A ) )
 
Theoremcaovdilemd 6137* Lemma used by real number construction. (Contributed by Jim Kingdon, 16-Sep-2019.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x G y )  =  ( y G x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x F y ) G z )  =  ( ( x G z ) F ( y G z ) ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x G y ) G z )  =  ( x G ( y G z ) ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x G y )  e.  S )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ph  ->  D  e.  S )   &    |-  ( ph  ->  H  e.  S )   =>    |-  ( ph  ->  (
 ( ( A G C ) F ( B G D ) ) G H )  =  ( ( A G ( C G H ) ) F ( B G ( D G H ) ) ) )
 
Theoremcaovlem2d 6138* Rearrangement of expression involving multiplication ( G) and addition ( F). (Contributed by Jim Kingdon, 3-Jan-2020.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x G y )  =  ( y G x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x F y ) G z )  =  ( ( x G z ) F ( y G z ) ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x G y ) G z )  =  ( x G ( y G z ) ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x G y )  e.  S )   &    |-  ( ph  ->  A  e.  S )   &    |-  ( ph  ->  B  e.  S )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ph  ->  D  e.  S )   &    |-  ( ph  ->  H  e.  S )   &    |-  ( ph  ->  R  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x F y )  =  ( y F x ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  ->  ( ( x F y ) F z )  =  ( x F ( y F z ) ) )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   =>    |-  ( ph  ->  (
 ( ( ( A G C ) F ( B G D ) ) G H ) F ( ( ( A G D ) F ( B G C ) ) G R ) )  =  ( ( A G ( ( C G H ) F ( D G R ) ) ) F ( B G ( ( C G R ) F ( D G H ) ) ) ) )
 
Theoremcaovimo 6139* Uniqueness of inverse element in commutative, associative operation with identity. The identity element is  B. (Contributed by Jim Kingdon, 18-Sep-2019.)
 |-  B  e.  S   &    |-  (
 ( x  e.  S  /\  y  e.  S )  ->  ( x F y )  =  ( y F x ) )   &    |-  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  ->  (
 ( x F y ) F z )  =  ( x F ( y F z ) ) )   &    |-  ( x  e.  S  ->  ( x F B )  =  x )   =>    |-  ( A  e.  S  ->  E* w ( w  e.  S  /\  ( A F w )  =  B ) )
 
2.6.12  Maps-to notation
 
Theoremelmpocl 6140* If a two-parameter class is inhabited, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( X  e.  ( S F T ) 
 ->  ( S  e.  A  /\  T  e.  B ) )
 
Theoremelmpocl1 6141* If a two-parameter class is inhabited, the first argument is in its nominal domain. (Contributed by FL, 15-Oct-2012.) (Revised by Stefan O'Rear, 7-Mar-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( X  e.  ( S F T ) 
 ->  S  e.  A )
 
Theoremelmpocl2 6142* If a two-parameter class is inhabited, the second argument is in its nominal domain. (Contributed by FL, 15-Oct-2012.) (Revised by Stefan O'Rear, 7-Mar-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( X  e.  ( S F T ) 
 ->  T  e.  B )
 
Theoremelovmpod 6143* Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.) Variant of elovmpo 6144 in deduction form. (Revised by AV, 20-Apr-2025.)
 |-  O  =  ( a  e.  A ,  b  e.  B  |->  C )   &    |-  ( ph  ->  X  e.  A )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  D  e.  V )   &    |-  (
 ( a  =  X  /\  b  =  Y )  ->  C  =  D )   =>    |-  ( ph  ->  ( E  e.  ( X O Y )  <->  E  e.  D ) )
 
Theoremelovmpo 6144* Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015.)
 |-  D  =  ( a  e.  A ,  b  e.  B  |->  C )   &    |-  C  e.  _V   &    |-  ( ( a  =  X  /\  b  =  Y )  ->  C  =  E )   =>    |-  ( F  e.  ( X D Y )  <->  ( X  e.  A  /\  Y  e.  B  /\  F  e.  E ) )
 
Theoremelovmporab 6145* Implications for the value of an operation, defined by the maps-to notation with a class abstraction as a result, having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
 |-  O  =  ( x  e.  _V ,  y  e.  _V  |->  { z  e.  M  |  ph } )   &    |-  (
 ( X  e.  _V  /\  Y  e.  _V )  ->  M  e.  _V )   =>    |-  ( Z  e.  ( X O Y )  ->  ( X  e.  _V  /\  Y  e.  _V  /\  Z  e.  M ) )
 
Theoremelovmporab1w 6146* Implications for the value of an operation, defined by the maps-to notation with a class abstraction as a result, having an element. Here, the base set of the class abstraction depends on the first operand. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by GG, 26-Jan-2024.)
 |-  O  =  ( x  e.  _V ,  y  e.  _V  |->  { z  e.  [_ x  /  m ]_ M  |  ph } )   &    |-  (
 ( X  e.  _V  /\  Y  e.  _V )  -> 
 [_ X  /  m ]_ M  e.  _V )   =>    |-  ( Z  e.  ( X O Y )  ->  ( X  e.  _V  /\  Y  e.  _V  /\  Z  e.  [_ X  /  m ]_ M ) )
 
Theoremf1ocnvd 6147* Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.)
 |-  F  =  ( x  e.  A  |->  C )   &    |-  ( ( ph  /\  x  e.  A )  ->  C  e.  W )   &    |-  ( ( ph  /\  y  e.  B ) 
 ->  D  e.  X )   &    |-  ( ph  ->  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D )
 ) )   =>    |-  ( ph  ->  ( F : A -1-1-onto-> B  /\  `' F  =  ( y  e.  B  |->  D ) ) )
 
Theoremf1od 6148* Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 12-May-2014.)
 |-  F  =  ( x  e.  A  |->  C )   &    |-  ( ( ph  /\  x  e.  A )  ->  C  e.  W )   &    |-  ( ( ph  /\  y  e.  B ) 
 ->  D  e.  X )   &    |-  ( ph  ->  ( ( x  e.  A  /\  y  =  C )  <->  ( y  e.  B  /\  x  =  D )
 ) )   =>    |-  ( ph  ->  F : A -1-1-onto-> B )
 
Theoremf1ocnv2d 6149* Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015.)
 |-  F  =  ( x  e.  A  |->  C )   &    |-  ( ( ph  /\  x  e.  A )  ->  C  e.  B )   &    |-  ( ( ph  /\  y  e.  B ) 
 ->  D  e.  A )   &    |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  B )
 )  ->  ( x  =  D  <->  y  =  C ) )   =>    |-  ( ph  ->  ( F : A -1-1-onto-> B  /\  `' F  =  ( y  e.  B  |->  D ) ) )
 
Theoremf1o2d 6150* Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 12-May-2014.)
 |-  F  =  ( x  e.  A  |->  C )   &    |-  ( ( ph  /\  x  e.  A )  ->  C  e.  B )   &    |-  ( ( ph  /\  y  e.  B ) 
 ->  D  e.  A )   &    |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  B )
 )  ->  ( x  =  D  <->  y  =  C ) )   =>    |-  ( ph  ->  F : A -1-1-onto-> B )
 
Theoremf1opw2 6151* A one-to-one mapping induces a one-to-one mapping on power sets. This version of f1opw 6152 avoids the Axiom of Replacement. (Contributed by Mario Carneiro, 26-Jun-2015.)
 |-  ( ph  ->  F : A -1-1-onto-> B )   &    |-  ( ph  ->  ( `' F " a )  e.  _V )   &    |-  ( ph  ->  ( F "
 b )  e.  _V )   =>    |-  ( ph  ->  (
 b  e.  ~P A  |->  ( F " b ) ) : ~P A -1-1-onto-> ~P B )
 
Theoremf1opw 6152* A one-to-one mapping induces a one-to-one mapping on power sets. (Contributed by Stefan O'Rear, 18-Nov-2014.) (Revised by Mario Carneiro, 26-Jun-2015.)
 |-  ( F : A -1-1-onto-> B  ->  ( b  e.  ~P A  |->  ( F "
 b ) ) : ~P A -1-1-onto-> ~P B )
 
Theoremsuppssfv 6153* Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.)
 |-  ( ph  ->  ( `' ( x  e.  D  |->  A ) " ( _V  \  { Y }
 ) )  C_  L )   &    |-  ( ph  ->  ( F `  Y )  =  Z )   &    |-  ( ( ph  /\  x  e.  D ) 
 ->  A  e.  V )   =>    |-  ( ph  ->  ( `' ( x  e.  D  |->  ( F `  A ) ) " ( _V  \  { Z } )
 )  C_  L )
 
Theoremsuppssov1 6154* Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
 |-  ( ph  ->  ( `' ( x  e.  D  |->  A ) " ( _V  \  { Y }
 ) )  C_  L )   &    |-  ( ( ph  /\  v  e.  R )  ->  ( Y O v )  =  Z )   &    |-  ( ( ph  /\  x  e.  D ) 
 ->  A  e.  V )   &    |-  ( ( ph  /\  x  e.  D )  ->  B  e.  R )   =>    |-  ( ph  ->  ( `' ( x  e.  D  |->  ( A O B ) ) " ( _V  \  { Z } )
 )  C_  L )
 
2.6.13  Function operation
 
Syntaxcof 6155 Extend class notation to include mapping of an operation to a function operation.
 class  oF R
 
Syntaxcofr 6156 Extend class notation to include mapping of a binary relation to a function relation.
 class  oR R
 
Definitiondf-of 6157* Define the function operation map. The definition is designed so that if  R is a binary operation, then  oF R is the analogous operation on functions which corresponds to applying  R pointwise to the values of the functions. (Contributed by Mario Carneiro, 20-Jul-2014.)
 |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
 )  |->  ( ( f `
  x ) R ( g `  x ) ) ) )
 
Definitiondf-ofr 6158* Define the function relation map. The definition is designed so that if  R is a binary relation, then  oF R is the analogous relation on functions which is true when each element of the left function relates to the corresponding element of the right function. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  oR R  =  { <. f ,  g >.  |  A. x  e.  ( dom  f  i^i 
 dom  g ) ( f `  x ) R ( g `  x ) }
 
Theoremofeqd 6159 Equality theorem for function operation, deduction form. (Contributed by SN, 11-Nov-2024.)
 |-  ( ph  ->  R  =  S )   =>    |-  ( ph  ->  oF R  =  oF S )
 
Theoremofeq 6160 Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
 |-  ( R  =  S  ->  oF R  =  oF S )
 
Theoremofreq 6161 Equality theorem for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  ( R  =  S  ->  oR R  =  oR S )
 
Theoremofexg 6162 A function operation restricted to a set is a set. (Contributed by NM, 28-Jul-2014.)
 |-  ( A  e.  V  ->  (  oF R  |`  A )  e.  _V )
 
Theoremnfof 6163 Hypothesis builder for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
 |-  F/_ x R   =>    |-  F/_ x  oF R
 
Theoremnfofr 6164 Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  F/_ x R   =>    |-  F/_ x  oR R
 
Theoremoffval 6165* Value of an operation applied to two functions. (Contributed by Mario Carneiro, 20-Jul-2014.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  G  Fn  B )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( A  i^i  B )  =  S   &    |-  (
 ( ph  /\  x  e.  A )  ->  ( F `  x )  =  C )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  ( G `  x )  =  D )   =>    |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  S  |->  ( C R D ) ) )
 
Theoremofrfval 6166* Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  G  Fn  B )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( A  i^i  B )  =  S   &    |-  (
 ( ph  /\  x  e.  A )  ->  ( F `  x )  =  C )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  ( G `  x )  =  D )   =>    |-  ( ph  ->  ( F  oR R G  <->  A. x  e.  S  C R D ) )
 
Theoremofvalg 6167 Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Jim Kingdon, 22-Nov-2023.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  G  Fn  B )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( A  i^i  B )  =  S   &    |-  (
 ( ph  /\  X  e.  A )  ->  ( F `
  X )  =  C )   &    |-  ( ( ph  /\  X  e.  B ) 
 ->  ( G `  X )  =  D )   &    |-  (
 ( ph  /\  X  e.  S )  ->  ( C R D )  e.  U )   =>    |-  ( ( ph  /\  X  e.  S )  ->  (
 ( F  oF R G ) `  X )  =  ( C R D ) )
 
Theoremofrval 6168 Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  G  Fn  B )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( A  i^i  B )  =  S   &    |-  (
 ( ph  /\  X  e.  A )  ->  ( F `
  X )  =  C )   &    |-  ( ( ph  /\  X  e.  B ) 
 ->  ( G `  X )  =  D )   =>    |-  (
 ( ph  /\  F  oR R G  /\  X  e.  S )  ->  C R D )
 
Theoremofmresval 6169 Value of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.)
 |-  ( ph  ->  F  e.  A )   &    |-  ( ph  ->  G  e.  B )   =>    |-  ( ph  ->  ( F (  oF R  |`  ( A  X.  B ) ) G )  =  ( F  oF R G ) )
 
Theoremoff 6170* The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  T )
 )  ->  ( x R y )  e.  U )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  G : B
 --> T )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( A  i^i  B )  =  C   =>    |-  ( ph  ->  ( F  oF R G ) : C --> U )
 
Theoremoffeq 6171* Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Jim Kingdon, 26-Nov-2023.)
 |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  T )
 )  ->  ( x R y )  e.  U )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  G : B
 --> T )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( A  i^i  B )  =  C   &    |-  ( ph  ->  H : C --> U )   &    |-  ( ( ph  /\  x  e.  A )  ->  ( F `  x )  =  D )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  ( G `  x )  =  E )   &    |-  (
 ( ph  /\  x  e.  C )  ->  ( D R E )  =  ( H `  x ) )   =>    |-  ( ph  ->  ( F  oF R G )  =  H )
 
Theoremofres 6172 Restrict the operands of a function operation to the same domain as that of the operation itself. (Contributed by Mario Carneiro, 15-Sep-2014.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  G  Fn  B )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( A  i^i  B )  =  C   =>    |-  ( ph  ->  ( F  oF R G )  =  ( ( F  |`  C )  oF R ( G  |`  C )
 ) )
 
Theoremoffval2 6173* The function operation expressed as a mapping. (Contributed by Mario Carneiro, 20-Jul-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  W )   &    |-  ( ( ph  /\  x  e.  A )  ->  C  e.  X )   &    |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )   &    |-  ( ph  ->  G  =  ( x  e.  A  |->  C ) )   =>    |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  A  |->  ( B R C ) ) )
 
Theoremofrfval2 6174* The function relation acting on maps. (Contributed by Mario Carneiro, 20-Jul-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  W )   &    |-  ( ( ph  /\  x  e.  A )  ->  C  e.  X )   &    |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )   &    |-  ( ph  ->  G  =  ( x  e.  A  |->  C ) )   =>    |-  ( ph  ->  ( F  oR R G  <->  A. x  e.  A  B R C ) )
 
Theoremsuppssof1 6175* Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
 |-  ( ph  ->  ( `' A " ( _V  \  { Y } )
 )  C_  L )   &    |-  (
 ( ph  /\  v  e.  R )  ->  ( Y O v )  =  Z )   &    |-  ( ph  ->  A : D --> V )   &    |-  ( ph  ->  B : D
 --> R )   &    |-  ( ph  ->  D  e.  W )   =>    |-  ( ph  ->  ( `' ( A  oF O B ) " ( _V  \  { Z }
 ) )  C_  L )
 
Theoremofco 6176 The composition of a function operation with another function. (Contributed by Mario Carneiro, 19-Dec-2014.)
 |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  G  Fn  B )   &    |-  ( ph  ->  H : D --> C )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  D  e.  X )   &    |-  ( A  i^i  B )  =  C   =>    |-  ( ph  ->  ( ( F  oF R G )  o.  H )  =  ( ( F  o.  H )  oF R ( G  o.  H ) ) )
 
Theoremoffveqb 6177* Equivalent expressions for equality with a function operation. (Contributed by NM, 9-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  G  Fn  A )   &    |-  ( ph  ->  H  Fn  A )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( F `  x )  =  B )   &    |-  (
 ( ph  /\  x  e.  A )  ->  ( G `  x )  =  C )   =>    |-  ( ph  ->  ( H  =  ( F  oF R G )  <->  A. x  e.  A  ( H `  x )  =  ( B R C ) ) )
 
Theoremoffveq 6178* Convert an identity of the operation to the analogous identity on the function operation. (Contributed by Mario Carneiro, 24-Jul-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F  Fn  A )   &    |-  ( ph  ->  G  Fn  A )   &    |-  ( ph  ->  H  Fn  A )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( F `  x )  =  B )   &    |-  (
 ( ph  /\  x  e.  A )  ->  ( G `  x )  =  C )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( B R C )  =  ( H `  x ) )   =>    |-  ( ph  ->  ( F  oF R G )  =  H )
 
Theoremofc1g 6179 Left operation by a constant. (Contributed by Mario Carneiro, 24-Jul-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  F  Fn  A )   &    |-  ( ( ph  /\  X  e.  A )  ->  ( F `  X )  =  C )   &    |-  ( ( ph  /\  X  e.  A ) 
 ->  ( B R C )  e.  U )   =>    |-  (
 ( ph  /\  X  e.  A )  ->  ( ( ( A  X.  { B } )  oF R F ) `  X )  =  ( B R C ) )
 
Theoremofc2g 6180 Right operation by a constant. (Contributed by NM, 7-Oct-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  F  Fn  A )   &    |-  ( ( ph  /\  X  e.  A )  ->  ( F `  X )  =  C )   &    |-  ( ( ph  /\  X  e.  A ) 
 ->  ( C R B )  e.  U )   =>    |-  (
 ( ph  /\  X  e.  A )  ->  ( ( F  oF R ( A  X.  { B } ) ) `  X )  =  ( C R B ) )
 
Theoremofc12 6181 Function operation on two constant functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  C  e.  X )   =>    |-  ( ph  ->  (
 ( A  X.  { B } )  oF R ( A  X.  { C } ) )  =  ( A  X.  { ( B R C ) } ) )
 
Theoremcaofref 6182* Transfer a reflexive law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ( ph  /\  x  e.  S )  ->  x R x )   =>    |-  ( ph  ->  F  oR R F )
 
Theoremcaofinvl 6183* Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  N : S --> S )   &    |-  ( ph  ->  G  =  ( v  e.  A  |->  ( N `  ( F `
  v ) ) ) )   &    |-  ( ( ph  /\  x  e.  S ) 
 ->  ( ( N `  x ) R x )  =  B )   =>    |-  ( ph  ->  ( G  oF R F )  =  ( A  X.  { B } ) )
 
Theoremcaofid0l 6184* Transfer a left identity law to the function operation. (Contributed by NM, 21-Oct-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ( ph  /\  x  e.  S ) 
 ->  ( B R x )  =  x )   =>    |-  ( ph  ->  ( ( A  X.  { B }
 )  oF R F )  =  F )
 
Theoremcaofid0r 6185* Transfer a right identity law to the function operation. (Contributed by NM, 21-Oct-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ( ph  /\  x  e.  S ) 
 ->  ( x R B )  =  x )   =>    |-  ( ph  ->  ( F  oF R ( A  X.  { B } ) )  =  F )
 
Theoremcaofid1 6186* Transfer a right absorption law to the function operation. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  C  e.  X )   &    |-  (
 ( ph  /\  x  e.  S )  ->  ( x R B )  =  C )   =>    |-  ( ph  ->  ( F  oF R ( A  X.  { B } ) )  =  ( A  X.  { C } ) )
 
Theoremcaofid2 6187* Transfer a right absorption law to the function operation. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  C  e.  X )   &    |-  (
 ( ph  /\  x  e.  S )  ->  ( B R x )  =  C )   =>    |-  ( ph  ->  (
 ( A  X.  { B } )  oF R F )  =  ( A  X.  { C } ) )
 
Theoremcaofcom 6188* Transfer a commutative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  G : A
 --> S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x R y )  =  ( y R x ) )   =>    |-  ( ph  ->  ( F  oF R G )  =  ( G  oF R F ) )
 
Theoremcaofrss 6189* Transfer a relation subset law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  G : A
 --> S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x R y  ->  x T y ) )   =>    |-  ( ph  ->  ( F  oR R G  ->  F  oR T G ) )
 
Theoremcaoftrn 6190* Transfer a transitivity law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  G : A
 --> S )   &    |-  ( ph  ->  H : A --> S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S )
 )  ->  ( ( x R y  /\  y T z )  ->  x U z ) )   =>    |-  ( ph  ->  ( ( F  oR R G  /\  G  oR T H )  ->  F  oR U H ) )
 
Theoremcaofdig 6191* Transfer a distributive law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> K )   &    |-  ( ph  ->  G : A
 --> S )   &    |-  ( ph  ->  H : A --> S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x R y )  e.  V )   &    |-  ( ( ph  /\  ( x  e.  K  /\  y  e.  S ) )  ->  ( x T y )  e.  W )   &    |-  ( ( ph  /\  ( x  e.  K  /\  y  e.  S  /\  z  e.  S ) )  ->  ( x T ( y R z ) )  =  ( ( x T y ) O ( x T z ) ) )   =>    |-  ( ph  ->  ( F  oF T ( G  oF R H ) )  =  ( ( F  oF T G )  oF O ( F  oF T H ) ) )
 
2.6.14  Functions (continued)
 
TheoremresfunexgALT 6192 The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. This version has a shorter proof than resfunexg 5804 but requires ax-pow 4217 and ax-un 4479. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( Fun  A  /\  B  e.  C ) 
 ->  ( A  |`  B )  e.  _V )
 
Theoremcofunexg 6193 Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.)
 |-  ( ( Fun  A  /\  B  e.  C ) 
 ->  ( A  o.  B )  e.  _V )
 
Theoremcofunex2g 6194 Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007.)
 |-  ( ( A  e.  V  /\  Fun  `' B )  ->  ( A  o.  B )  e.  _V )
 
TheoremfnexALT 6195 If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of funimaexg 5357. This version of fnex 5805 uses ax-pow 4217 and ax-un 4479, whereas fnex 5805 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  e.  _V )
 
Theoremfunexw 6196 Weak version of funex 5806 that holds without ax-coll 4158. If the domain and codomain of a function exist, so does the function. (Contributed by Rohan Ridenour, 13-Aug-2023.)
 |-  ( ( Fun  F  /\  dom  F  e.  B  /\  ran  F  e.  C )  ->  F  e.  _V )
 
Theoremmptexw 6197* Weak version of mptex 5809 that holds without ax-coll 4158. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.)
 |-  A  e.  _V   &    |-  C  e.  _V   &    |-  A. x  e.  A  B  e.  C   =>    |-  ( x  e.  A  |->  B )  e.  _V
 
Theoremfunrnex 6198 If the domain of a function exists, so does its range. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of funex 5806. (Contributed by NM, 11-Nov-1995.)
 |-  ( dom  F  e.  B  ->  ( Fun  F  ->  ran  F  e.  _V ) )
 
Theoremfocdmex 6199 If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.)
 |-  ( A  e.  C  ->  ( F : A -onto-> B  ->  B  e.  _V ) )
 
Theoremf1dmex 6200 If the codomain of a one-to-one function exists, so does its domain. This can be thought of as a form of the Axiom of Replacement. (Contributed by NM, 4-Sep-2004.)
 |-  ( ( F : A -1-1-> B  /\  B  e.  C )  ->  A  e.  _V )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-15956
  Copyright terms: Public domain < Previous  Next >