HomeHome Intuitionistic Logic Explorer
Theorem List (p. 62 of 140)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6101-6200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
TheoremxpexgALT 6101 The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. This version is proven using Replacement; see xpexg 4718 for a version that uses the Power Set axiom instead. (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B )  e.  _V )
 
Theoremoffval3 6102* General value of  ( F  oF R G ) with no assumptions on functionality of  F and  G. (Contributed by Stefan O'Rear, 24-Jan-2015.)
 |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( F  oF R G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
  x ) R ( G `  x ) ) ) )
 
Theoremoffres 6103 Pointwise combination commutes with restriction. (Contributed by Stefan O'Rear, 24-Jan-2015.)
 |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( ( F  oF R G )  |`  D )  =  ( ( F  |`  D )  oF R ( G  |`  D )
 ) )
 
Theoremofmres 6104* Equivalent expressions for a restriction of the function operation map. Unlike  oF R which is a proper class,  (  oF R  |`  ( A  X.  B
) ) can be a set by ofmresex 6105, allowing it to be used as a function or structure argument. By ofmresval 6061, the restricted operation map values are the same as the original values, allowing theorems for  oF R to be reused. (Contributed by NM, 20-Oct-2014.)
 |-  (  oF R  |`  ( A  X.  B ) )  =  (
 f  e.  A ,  g  e.  B  |->  ( f  oF R g ) )
 
Theoremofmresex 6105 Existence of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   =>    |-  ( ph  ->  (  oF R  |`  ( A  X.  B ) )  e.  _V )
 
2.6.15  First and second members of an ordered pair
 
Syntaxc1st 6106 Extend the definition of a class to include the first member an ordered pair function.
 class  1st
 
Syntaxc2nd 6107 Extend the definition of a class to include the second member an ordered pair function.
 class  2nd
 
Definitiondf-1st 6108 Define a function that extracts the first member, or abscissa, of an ordered pair. Theorem op1st 6114 proves that it does this. For example, ( 1st `  <. 3 , 4  >.) = 3 . Equivalent to Definition 5.13 (i) of [Monk1] p. 52 (compare op1sta 5085 and op1stb 4456). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.)
 |- 
 1st  =  ( x  e.  _V  |->  U. dom  { x } )
 
Definitiondf-2nd 6109 Define a function that extracts the second member, or ordinate, of an ordered pair. Theorem op2nd 6115 proves that it does this. For example,  ( 2nd ` 
<. 3 , 4 
>.) = 4 . Equivalent to Definition 5.13 (ii) of [Monk1] p. 52 (compare op2nda 5088 and op2ndb 5087). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.)
 |- 
 2nd  =  ( x  e.  _V  |->  U. ran  { x } )
 
Theorem1stvalg 6110 The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( A  e.  _V  ->  ( 1st `  A )  =  U. dom  { A } )
 
Theorem2ndvalg 6111 The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( A  e.  _V  ->  ( 2nd `  A )  =  U. ran  { A } )
 
Theorem1st0 6112 The value of the first-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
 |-  ( 1st `  (/) )  =  (/)
 
Theorem2nd0 6113 The value of the second-member function at the empty set. (Contributed by NM, 23-Apr-2007.)
 |-  ( 2nd `  (/) )  =  (/)
 
Theoremop1st 6114 Extract the first member of an ordered pair. (Contributed by NM, 5-Oct-2004.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( 1st `  <. A ,  B >. )  =  A
 
Theoremop2nd 6115 Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( 2nd `  <. A ,  B >. )  =  B
 
Theoremop1std 6116 Extract the first member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( C  =  <. A ,  B >.  ->  ( 1st `  C )  =  A )
 
Theoremop2ndd 6117 Extract the second member of an ordered pair. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( C  =  <. A ,  B >.  ->  ( 2nd `  C )  =  B )
 
Theoremop1stg 6118 Extract the first member of an ordered pair. (Contributed by NM, 19-Jul-2005.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 1st `  <. A ,  B >. )  =  A )
 
Theoremop2ndg 6119 Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( 2nd `  <. A ,  B >. )  =  B )
 
Theoremot1stg 6120 Extract the first member of an ordered triple. (Due to infrequent usage, it isn't worthwhile at this point to define special extractors for triples, so we reuse the ordered pair extractors for ot1stg 6120, ot2ndg 6121, ot3rdgg 6122.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( 1st `  ( 1st `  <. A ,  B ,  C >. ) )  =  A )
 
Theoremot2ndg 6121 Extract the second member of an ordered triple. (See ot1stg 6120 comment.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( 2nd `  ( 1st `  <. A ,  B ,  C >. ) )  =  B )
 
Theoremot3rdgg 6122 Extract the third member of an ordered triple. (See ot1stg 6120 comment.) (Contributed by NM, 3-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  ( 2nd `  <. A ,  B ,  C >. )  =  C )
 
Theorem1stval2 6123 Alternate value of the function that extracts the first member of an ordered pair. Definition 5.13 (i) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.)
 |-  ( A  e.  ( _V  X.  _V )  ->  ( 1st `  A )  =  |^| |^| A )
 
Theorem2ndval2 6124 Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.)
 |-  ( A  e.  ( _V  X.  _V )  ->  ( 2nd `  A )  =  |^| |^| |^| `' { A } )
 
Theoremfo1st 6125 The  1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |- 
 1st : _V -onto-> _V
 
Theoremfo2nd 6126 The  2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |- 
 2nd : _V -onto-> _V
 
Theoremf1stres 6127 Mapping of a restriction of the 
1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) --> A
 
Theoremf2ndres 6128 Mapping of a restriction of the 
2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario Carneiro, 8-Sep-2013.)
 |-  ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) --> B
 
Theoremfo1stresm 6129* Onto mapping of a restriction of the  1st (first member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
 |-  ( E. y  y  e.  B  ->  ( 1st  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> A )
 
Theoremfo2ndresm 6130* Onto mapping of a restriction of the  2nd (second member of an ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
 |-  ( E. x  x  e.  A  ->  ( 2nd  |`  ( A  X.  B ) ) : ( A  X.  B ) -onto-> B )
 
Theorem1stcof 6131 Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.)
 |-  ( F : A --> ( B  X.  C ) 
 ->  ( 1st  o.  F ) : A --> B )
 
Theorem2ndcof 6132 Composition of the second member function with another function. (Contributed by FL, 15-Oct-2012.)
 |-  ( F : A --> ( B  X.  C ) 
 ->  ( 2nd  o.  F ) : A --> C )
 
Theoremxp1st 6133 Location of the first element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( A  e.  ( B  X.  C )  ->  ( 1st `  A )  e.  B )
 
Theoremxp2nd 6134 Location of the second element of a Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( A  e.  ( B  X.  C )  ->  ( 2nd `  A )  e.  C )
 
Theorem1stexg 6135 Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.)
 |-  ( A  e.  V  ->  ( 1st `  A )  e.  _V )
 
Theorem2ndexg 6136 Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.)
 |-  ( A  e.  V  ->  ( 2nd `  A )  e.  _V )
 
Theoremelxp6 6137 Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5091. (Contributed by NM, 9-Oct-2004.)
 |-  ( A  e.  ( B  X.  C )  <->  ( A  =  <. ( 1st `  A ) ,  ( 2nd `  A ) >.  /\  (
 ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C ) ) )
 
Theoremelxp7 6138 Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp4 5091. (Contributed by NM, 19-Aug-2006.)
 |-  ( A  e.  ( B  X.  C )  <->  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A )  e.  B  /\  ( 2nd `  A )  e.  C ) ) )
 
Theoremoprssdmm 6139* Domain of closure of an operation. (Contributed by Jim Kingdon, 23-Oct-2023.)
 |-  ( ( ph  /\  u  e.  S )  ->  E. v  v  e.  u )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x F y )  e.  S )   &    |-  ( ph  ->  Rel  F )   =>    |-  ( ph  ->  ( S  X.  S )  C_  dom  F )
 
Theoremeqopi 6140 Equality with an ordered pair. (Contributed by NM, 15-Dec-2008.) (Revised by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( A  e.  ( V  X.  W ) 
 /\  ( ( 1st `  A )  =  B  /\  ( 2nd `  A )  =  C )
 )  ->  A  =  <. B ,  C >. )
 
Theoremxp2 6141* Representation of cross product based on ordered pair component functions. (Contributed by NM, 16-Sep-2006.)
 |-  ( A  X.  B )  =  { x  e.  ( _V  X.  _V )  |  ( ( 1st `  x )  e.  A  /\  ( 2nd `  x )  e.  B ) }
 
Theoremunielxp 6142 The membership relation for a cross product is inherited by union. (Contributed by NM, 16-Sep-2006.)
 |-  ( A  e.  ( B  X.  C )  ->  U. A  e.  U. ( B  X.  C ) )
 
Theorem1st2nd2 6143 Reconstruction of a member of a cross product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.)
 |-  ( A  e.  ( B  X.  C )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A ) >. )
 
Theoremxpopth 6144 An ordered pair theorem for members of cross products. (Contributed by NM, 20-Jun-2007.)
 |-  ( ( A  e.  ( C  X.  D ) 
 /\  B  e.  ( R  X.  S ) ) 
 ->  ( ( ( 1st `  A )  =  ( 1st `  B )  /\  ( 2nd `  A )  =  ( 2nd `  B ) )  <->  A  =  B ) )
 
Theoremeqop 6145 Two ways to express equality with an ordered pair. (Contributed by NM, 3-Sep-2007.) (Proof shortened by Mario Carneiro, 26-Apr-2015.)
 |-  ( A  e.  ( V  X.  W )  ->  ( A  =  <. B ,  C >.  <->  ( ( 1st `  A )  =  B  /\  ( 2nd `  A )  =  C )
 ) )
 
Theoremeqop2 6146 Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014.)
 |-  B  e.  _V   &    |-  C  e.  _V   =>    |-  ( A  =  <. B ,  C >.  <->  ( A  e.  ( _V  X.  _V )  /\  ( ( 1st `  A )  =  B  /\  ( 2nd `  A )  =  C ) ) )
 
Theoremop1steq 6147* Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.)
 |-  ( A  e.  ( V  X.  W )  ->  ( ( 1st `  A )  =  B  <->  E. x  A  =  <. B ,  x >. ) )
 
Theorem2nd1st 6148 Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.)
 |-  ( A  e.  ( B  X.  C )  ->  U. `' { A }  =  <. ( 2nd `  A ) ,  ( 1st `  A ) >. )
 
Theorem1st2nd 6149 Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.)
 |-  ( ( Rel  B  /\  A  e.  B ) 
 ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A ) >. )
 
Theorem1stdm 6150 The first ordered pair component of a member of a relation belongs to the domain of the relation. (Contributed by NM, 17-Sep-2006.)
 |-  ( ( Rel  R  /\  A  e.  R ) 
 ->  ( 1st `  A )  e.  dom  R )
 
Theorem2ndrn 6151 The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.)
 |-  ( ( Rel  R  /\  A  e.  R ) 
 ->  ( 2nd `  A )  e.  ran  R )
 
Theorem1st2ndbr 6152 Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.)
 |-  ( ( Rel  B  /\  A  e.  B ) 
 ->  ( 1st `  A ) B ( 2nd `  A ) )
 
Theoremreleldm2 6153* Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013.)
 |-  ( Rel  A  ->  ( B  e.  dom  A  <->  E. x  e.  A  ( 1st `  x )  =  B ) )
 
Theoremreldm 6154* An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.)
 |-  ( Rel  A  ->  dom 
 A  =  ran  ( x  e.  A  |->  ( 1st `  x ) ) )
 
Theoremsbcopeq1a 6155 Equality theorem for substitution of a class for an ordered pair (analog of sbceq1a 2960 that avoids the existential quantifiers of copsexg 4222). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( A  =  <. x ,  y >.  ->  ( [. ( 1st `  A )  /  x ]. [. ( 2nd `  A )  /  y ]. ph  <->  ph ) )
 
Theoremcsbopeq1a 6156 Equality theorem for substitution of a class  A for an ordered pair  <. x ,  y >. in  B (analog of csbeq1a 3054). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( A  =  <. x ,  y >.  ->  [_ ( 1st `  A )  /  x ]_ [_ ( 2nd `  A )  /  y ]_ B  =  B )
 
Theoremdfopab2 6157* A way to define an ordered-pair class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |- 
 { <. x ,  y >.  |  ph }  =  { z  e.  ( _V  X.  _V )  | 
 [. ( 1st `  z
 )  /  x ]. [. ( 2nd `  z )  /  y ]. ph }
 
Theoremdfoprab3s 6158* A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |- 
 { <. <. x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  ( w  e.  ( _V  X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph ) }
 
Theoremdfoprab3 6159* Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.)
 |-  ( w  =  <. x ,  y >.  ->  ( ph 
 <->  ps ) )   =>    |-  { <. w ,  z >.  |  ( w  e.  ( _V  X.  _V )  /\  ph ) }  =  { <. <. x ,  y >. ,  z >.  |  ps }
 
Theoremdfoprab4 6160* Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  ( w  =  <. x ,  y >.  ->  ( ph 
 <->  ps ) )   =>    |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }
 
Theoremdfoprab4f 6161* Operation class abstraction expressed without existential quantifiers. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |- 
 F/ x ph   &    |-  F/ y ph   &    |-  ( w  =  <. x ,  y >.  ->  ( ph  <->  ps ) )   =>    |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  ph ) }  =  { <. <. x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }
 
Theoremdfxp3 6162* Define the cross product of three classes. Compare df-xp 4610. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 3-Nov-2015.)
 |-  ( ( A  X.  B )  X.  C )  =  { <. <. x ,  y >. ,  z >.  |  ( x  e.  A  /\  y  e.  B  /\  z  e.  C ) }
 
Theoremelopabi 6163* A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.)
 |-  ( x  =  ( 1st `  A )  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  ( 2nd `  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( A  e.  {
 <. x ,  y >.  | 
 ph }  ->  ch )
 
Theoremeloprabi 6164* A consequence of membership in an operation class abstraction, using ordered pair extractors. (Contributed by NM, 6-Nov-2006.) (Revised by David Abernethy, 19-Jun-2012.)
 |-  ( x  =  ( 1st `  ( 1st `  A ) )  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  ( 2nd `  ( 1st `  A ) )  ->  ( ps  <->  ch ) )   &    |-  ( z  =  ( 2nd `  A )  ->  ( ch  <->  th ) )   =>    |-  ( A  e.  {
 <. <. x ,  y >. ,  z >.  |  ph } 
 ->  th )
 
Theoremmpomptsx 6165* Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Dec-2016.)
 |-  ( x  e.  A ,  y  e.  B  |->  C )  =  (
 z  e.  U_ x  e.  A  ( { x }  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
 
Theoremmpompts 6166* Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Sep-2015.)
 |-  ( x  e.  A ,  y  e.  B  |->  C )  =  (
 z  e.  ( A  X.  B )  |->  [_ ( 1st `  z )  /  x ]_ [_ ( 2nd `  z )  /  y ]_ C )
 
Theoremdmmpossx 6167* The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  dom  F  C_  U_ x  e.  A  ( { x }  X.  B )
 
Theoremfmpox 6168* Functionality, domain and codomain of a class given by the maps-to notation, where  B ( x ) is not constant but depends on  x. (Contributed by NM, 29-Dec-2014.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( A. x  e.  A  A. y  e.  B  C  e.  D  <->  F : U_ x  e.  A  ( { x }  X.  B ) --> D )
 
Theoremfmpo 6169* Functionality, domain and range of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( A. x  e.  A  A. y  e.  B  C  e.  D  <->  F : ( A  X.  B ) --> D )
 
Theoremfnmpo 6170* Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  F  Fn  ( A  X.  B ) )
 
Theoremmpofvex 6171* Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( ( A. x A. y  C  e.  V  /\  R  e.  W  /\  S  e.  X ) 
 ->  ( R F S )  e.  _V )
 
Theoremfnmpoi 6172* Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   &    |-  C  e.  _V   =>    |-  F  Fn  ( A  X.  B )
 
Theoremdmmpo 6173* Domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   &    |-  C  e.  _V   =>    |- 
 dom  F  =  ( A  X.  B )
 
Theoremmpofvexi 6174* Sufficient condition for an operation maps-to notation to be set-like. (Contributed by Mario Carneiro, 3-Jul-2019.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   &    |-  C  e.  _V   &    |-  R  e.  _V   &    |-  S  e.  _V   =>    |-  ( R F S )  e.  _V
 
Theoremovmpoelrn 6175* An operation's value belongs to its range. (Contributed by AV, 27-Jan-2020.)
 |-  O  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( ( A. x  e.  A  A. y  e.  B  C  e.  M  /\  X  e.  A  /\  Y  e.  B )  ->  ( X O Y )  e.  M )
 
Theoremdmmpoga 6176* Domain of an operation given by the maps-to notation, closed form of dmmpo 6173. (Contributed by Alexander van der Vekens, 10-Feb-2019.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  dom  F  =  ( A  X.  B ) )
 
Theoremdmmpog 6177* Domain of an operation given by the maps-to notation, closed form of dmmpo 6173. Caution: This theorem is only valid in the very special case where the value of the mapping is a constant! (Contributed by Alexander van der Vekens, 1-Jun-2017.) (Proof shortened by AV, 10-Feb-2019.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( C  e.  V  ->  dom  F  =  ( A  X.  B ) )
 
Theoremmpoexxg 6178* Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( ( A  e.  R  /\  A. x  e.  A  B  e.  S )  ->  F  e.  _V )
 
Theoremmpoexg 6179* Existence of an operation class abstraction (special case). (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 1-Sep-2015.)
 |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   =>    |-  ( ( A  e.  R  /\  B  e.  S )  ->  F  e.  _V )
 
Theoremmpoexga 6180* If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by NM, 12-Sep-2011.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( x  e.  A ,  y  e.  B  |->  C )  e. 
 _V )
 
Theoremmpoexw 6181* Weak version of mpoex 6182 that holds without ax-coll 4097. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  D  e.  _V   &    |-  A. x  e.  A  A. y  e.  B  C  e.  D   =>    |-  ( x  e.  A ,  y  e.  B  |->  C )  e.  _V
 
Theoremmpoex 6182* If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( x  e.  A ,  y  e.  B  |->  C )  e.  _V
 
Theoremfnmpoovd 6183* A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019.) (Revised by AV, 3-Jul-2022.)
 |-  ( ph  ->  M  Fn  ( A  X.  B ) )   &    |-  ( ( i  =  a  /\  j  =  b )  ->  D  =  C )   &    |-  ( ( ph  /\  i  e.  A  /\  j  e.  B )  ->  D  e.  U )   &    |-  ( ( ph  /\  a  e.  A  /\  b  e.  B )  ->  C  e.  V )   =>    |-  ( ph  ->  ( M  =  ( a  e.  A ,  b  e.  B  |->  C )  <->  A. i  e.  A  A. j  e.  B  ( i M j )  =  D ) )
 
Theoremfmpoco 6184* Composition of two functions. Variation of fmptco 5651 when the second function has two arguments. (Contributed by Mario Carneiro, 8-Feb-2015.)
 |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  B )
 )  ->  R  e.  C )   &    |-  ( ph  ->  F  =  ( x  e.  A ,  y  e.  B  |->  R ) )   &    |-  ( ph  ->  G  =  ( z  e.  C  |->  S ) )   &    |-  (
 z  =  R  ->  S  =  T )   =>    |-  ( ph  ->  ( G  o.  F )  =  ( x  e.  A ,  y  e.  B  |->  T ) )
 
Theoremoprabco 6185* Composition of a function with an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 26-Sep-2015.)
 |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  e.  D )   &    |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )   &    |-  G  =  ( x  e.  A ,  y  e.  B  |->  ( H `  C ) )   =>    |-  ( H  Fn  D  ->  G  =  ( H  o.  F ) )
 
Theoremoprab2co 6186* Composition of operator abstractions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by David Abernethy, 23-Apr-2013.)
 |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  e.  R )   &    |-  ( ( x  e.  A  /\  y  e.  B )  ->  D  e.  S )   &    |-  F  =  ( x  e.  A ,  y  e.  B  |->  <. C ,  D >. )   &    |-  G  =  ( x  e.  A ,  y  e.  B  |->  ( C M D ) )   =>    |-  ( M  Fn  ( R  X.  S )  ->  G  =  ( M  o.  F ) )
 
Theoremdf1st2 6187* An alternate possible definition of the  1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |- 
 { <. <. x ,  y >. ,  z >.  |  z  =  x }  =  ( 1st  |`  ( _V  X.  _V ) )
 
Theoremdf2nd2 6188* An alternate possible definition of the  2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |- 
 { <. <. x ,  y >. ,  z >.  |  z  =  y }  =  ( 2nd  |`  ( _V  X.  _V ) )
 
Theorem1stconst 6189 The mapping of a restriction of the  1st function to a constant function. (Contributed by NM, 14-Dec-2008.)
 |-  ( B  e.  V  ->  ( 1st  |`  ( A  X.  { B }
 ) ) : ( A  X.  { B } ) -1-1-onto-> A )
 
Theorem2ndconst 6190 The mapping of a restriction of the  2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008.)
 |-  ( A  e.  V  ->  ( 2nd  |`  ( { A }  X.  B ) ) : ( { A }  X.  B ) -1-1-onto-> B )
 
Theoremdfmpo 6191* Alternate definition for the maps-to notation df-mpo 5847 (although it requires that  C be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  C  e.  _V   =>    |-  ( x  e.  A ,  y  e.  B  |->  C )  = 
 U_ x  e.  A  U_ y  e.  B  { <.
 <. x ,  y >. ,  C >. }
 
Theoremcnvf1olem 6192 Lemma for cnvf1o 6193. (Contributed by Mario Carneiro, 27-Apr-2014.)
 |-  ( ( Rel  A  /\  ( B  e.  A  /\  C  =  U. `' { B } ) ) 
 ->  ( C  e.  `' A  /\  B  =  U. `' { C } )
 )
 
Theoremcnvf1o 6193* Describe a function that maps the elements of a set to its converse bijectively. (Contributed by Mario Carneiro, 27-Apr-2014.)
 |-  ( Rel  A  ->  ( x  e.  A  |->  U. `' { x } ) : A -1-1-onto-> `' A )
 
Theoremf2ndf 6194 The  2nd (second component of an ordered pair) function restricted to a function  F is a function from  F into the codomain of  F. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
 |-  ( F : A --> B  ->  ( 2nd  |`  F ) : F --> B )
 
Theoremfo2ndf 6195 The  2nd (second component of an ordered pair) function restricted to a function  F is a function from  F onto the range of  F. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
 |-  ( F : A --> B  ->  ( 2nd  |`  F ) : F -onto-> ran  F )
 
Theoremf1o2ndf1 6196 The  2nd (second component of an ordered pair) function restricted to a one-to-one function  F is a one-to-one function from  F onto the range of  F. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
 |-  ( F : A -1-1-> B 
 ->  ( 2nd  |`  F ) : F -1-1-onto-> ran  F )
 
Theoremalgrflem 6197 Lemma for algrf and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  B  e.  _V   &    |-  C  e.  _V   =>    |-  ( B ( F  o.  1st ) C )  =  ( F `
  B )
 
Theoremalgrflemg 6198 Lemma for algrf 11977 and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Jim Kingdon, 22-Jul-2021.)
 |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( B ( F  o.  1st ) C )  =  ( F `  B ) )
 
Theoremxporderlem 6199* Lemma for lexicographical ordering theorems. (Contributed by Scott Fenton, 16-Mar-2011.)
 |-  T  =  { <. x ,  y >.  |  ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x ) R ( 1st `  y
 )  \/  ( ( 1st `  x )  =  ( 1st `  y
 )  /\  ( 2nd `  x ) S ( 2nd `  y )
 ) ) ) }   =>    |-  ( <. a ,  b >. T
 <. c ,  d >.  <->  (
 ( ( a  e.  A  /\  c  e.  A )  /\  (
 b  e.  B  /\  d  e.  B )
 )  /\  ( a R c  \/  (
 a  =  c  /\  b S d ) ) ) )
 
Theorempoxp 6200* A lexicographical ordering of two posets. (Contributed by Scott Fenton, 16-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.)
 |-  T  =  { <. x ,  y >.  |  ( ( x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x ) R ( 1st `  y
 )  \/  ( ( 1st `  x )  =  ( 1st `  y
 )  /\  ( 2nd `  x ) S ( 2nd `  y )
 ) ) ) }   =>    |-  (
 ( R  Po  A  /\  S  Po  B ) 
 ->  T  Po  ( A  X.  B ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >