Theorem List for Intuitionistic Logic Explorer - 6101-6200 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | caofrss 6101* |
Transfer a relation subset law to the function relation. (Contributed
by Mario Carneiro, 28-Jul-2014.)
|
![( (](lp.gif) ![V V](_cv.gif) ![( (](lp.gif) ![F F](_cf.gif) ![: :](colon.gif) ![A A](_ca.gif) ![--> -->](longrightarrow.gif) ![S S](_cs.gif) ![( (](lp.gif)
![G G](_cg.gif) ![: :](colon.gif) ![A A](_ca.gif) ![-->
-->](longrightarrow.gif) ![S S](_cs.gif) ![( (](lp.gif) ![( (](lp.gif) ![( (](lp.gif)
![S S](_cs.gif) ![) )](rp.gif)
![( (](lp.gif) ![x x](_x.gif) ![R R](_cr.gif) ![x x](_x.gif) ![T T](_ct.gif) ![y y](_y.gif) ![) )](rp.gif) ![( (](lp.gif)
![( (](lp.gif) ![o o](circ.gif) ![R R](subr.gif) ![R R](_cr.gif) ![o o](circ.gif) ![R R](subr.gif) ![T T](_ct.gif) ![G G](_cg.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | caoftrn 6102* |
Transfer a transitivity law to the function relation. (Contributed by
Mario Carneiro, 28-Jul-2014.)
|
![( (](lp.gif) ![V V](_cv.gif) ![( (](lp.gif) ![F F](_cf.gif) ![: :](colon.gif) ![A A](_ca.gif) ![--> -->](longrightarrow.gif) ![S S](_cs.gif) ![( (](lp.gif)
![G G](_cg.gif) ![: :](colon.gif) ![A A](_ca.gif) ![-->
-->](longrightarrow.gif) ![S S](_cs.gif) ![( (](lp.gif) ![H H](_ch.gif) ![: :](colon.gif) ![A A](_ca.gif) ![--> -->](longrightarrow.gif) ![S S](_cs.gif) ![( (](lp.gif) ![( (](lp.gif) ![( (](lp.gif)
![S S](_cs.gif) ![) )](rp.gif)
![( (](lp.gif) ![( (](lp.gif) ![x x](_x.gif) ![R R](_cr.gif) ![y y](_y.gif) ![T T](_ct.gif) ![z z](_z.gif) ![x x](_x.gif) ![U U](_cu.gif) ![z z](_z.gif) ![) )](rp.gif) ![( (](lp.gif)
![( (](lp.gif) ![( (](lp.gif) ![o o](circ.gif) ![R R](subr.gif) ![R R](_cr.gif) ![o o](circ.gif) ![R R](subr.gif) ![T T](_ct.gif) ![H H](_ch.gif) ![o o](circ.gif) ![R R](subr.gif) ![U U](_cu.gif) ![H H](_ch.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
2.6.14 Functions (continued)
|
|
Theorem | resfunexgALT 6103 |
The restriction of a function to a set exists. Compare Proposition 6.17
of [TakeutiZaring] p. 28. This
version has a shorter proof than
resfunexg 5733 but requires ax-pow 4171 and ax-un 4430. (Contributed by NM,
7-Apr-1995.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![( (](lp.gif) ![B B](_cb.gif) ![_V _V](rmcv.gif) ![) )](rp.gif) |
|
Theorem | cofunexg 6104 |
Existence of a composition when the first member is a function.
(Contributed by NM, 8-Oct-2007.)
|
![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![( (](lp.gif) ![B B](_cb.gif)
![_V _V](rmcv.gif) ![) )](rp.gif) |
|
Theorem | cofunex2g 6105 |
Existence of a composition when the second member is one-to-one.
(Contributed by NM, 8-Oct-2007.)
|
![( (](lp.gif) ![( (](lp.gif)
![`' `'](_cnv.gif) ![B B](_cb.gif) ![( (](lp.gif) ![B B](_cb.gif)
![_V _V](rmcv.gif) ![) )](rp.gif) |
|
Theorem | fnexALT 6106 |
If the domain of a function is a set, the function is a set. Theorem
6.16(1) of [TakeutiZaring] p. 28.
This theorem is derived using the Axiom
of Replacement in the form of funimaexg 5296. This version of fnex 5734
uses
ax-pow 4171 and ax-un 4430, whereas fnex 5734
does not. (Contributed by NM,
14-Aug-1994.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif) ![_V _V](rmcv.gif) ![) )](rp.gif) |
|
Theorem | funexw 6107 |
Weak version of funex 5735 that holds without ax-coll 4115. If the domain and
codomain of a function exist, so does the function. (Contributed by Rohan
Ridenour, 13-Aug-2023.)
|
![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![_V _V](rmcv.gif) ![) )](rp.gif) |
|
Theorem | mptexw 6108* |
Weak version of mptex 5738 that holds without ax-coll 4115. If the domain
and codomain of a function given by maps-to notation are sets, the
function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.)
|
![A. A.](forall.gif) ![( (](lp.gif)
![B B](_cb.gif) ![_V _V](rmcv.gif) |
|
Theorem | funrnex 6109 |
If the domain of a function exists, so does its range. Part of Theorem
4.15(v) of [Monk1] p. 46. This theorem is
derived using the Axiom of
Replacement in the form of funex 5735. (Contributed by NM, 11-Nov-1995.)
|
![( (](lp.gif) ![( (](lp.gif) ![_V _V](rmcv.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | focdmex 6110 |
If the domain of an onto function exists, so does its codomain.
(Contributed by NM, 23-Jul-2004.)
|
![( (](lp.gif) ![( (](lp.gif) ![F F](_cf.gif) ![: :](colon.gif) ![A A](_ca.gif) ![-onto-> -onto->](onto.gif) ![_V _V](rmcv.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | f1dmex 6111 |
If the codomain of a one-to-one function exists, so does its domain. This
can be thought of as a form of the Axiom of Replacement. (Contributed by
NM, 4-Sep-2004.)
|
![( (](lp.gif) ![( (](lp.gif) ![F F](_cf.gif) ![: :](colon.gif) ![A A](_ca.gif) ![-1-1-> -1-1->](onetoone.gif)
![C C](_cc.gif)
![_V _V](rmcv.gif) ![) )](rp.gif) |
|
Theorem | abrexex 6112* |
Existence of a class abstraction of existentially restricted sets.
is normally a free-variable parameter in the class expression
substituted for , which can be thought of as ![B B](_cb.gif) ![( (](lp.gif) ![x x](_x.gif) . This
simple-looking theorem is actually quite powerful and appears to involve
the Axiom of Replacement in an intrinsic way, as can be seen by tracing
back through the path mptexg 5737, funex 5735, fnex 5734, resfunexg 5733, and
funimaexg 5296. See also abrexex2 6119. (Contributed by NM, 16-Oct-2003.)
(Proof shortened by Mario Carneiro, 31-Aug-2015.)
|
![{ {](lbrace.gif) ![E.
E.](exists.gif)
![B B](_cb.gif) ![_V _V](rmcv.gif) |
|
Theorem | abrexexg 6113* |
Existence of a class abstraction of existentially restricted sets.
is normally a free-variable parameter in . The antecedent assures
us that is a
set. (Contributed by NM, 3-Nov-2003.)
|
![( (](lp.gif) ![{ {](lbrace.gif) ![E. E.](exists.gif)
![B B](_cb.gif) ![_V _V](rmcv.gif) ![) )](rp.gif) |
|
Theorem | iunexg 6114* |
The existence of an indexed union. is normally a free-variable
parameter in .
(Contributed by NM, 23-Mar-2006.)
|
![( (](lp.gif) ![( (](lp.gif) ![A. A.](forall.gif) ![W W](_cw.gif) ![U_ U_](_cupbar.gif)
![_V _V](rmcv.gif) ![) )](rp.gif) |
|
Theorem | abrexex2g 6115* |
Existence of an existentially restricted class abstraction.
(Contributed by Jeff Madsen, 2-Sep-2009.)
|
![( (](lp.gif) ![( (](lp.gif) ![A. A.](forall.gif) ![{ {](lbrace.gif) ![ph
ph](_varphi.gif)
![W W](_cw.gif) ![{ {](lbrace.gif) ![E.
E.](exists.gif) ![ph ph](_varphi.gif) ![_V _V](rmcv.gif) ![) )](rp.gif) |
|
Theorem | opabex3d 6116* |
Existence of an ordered pair abstraction, deduction version.
(Contributed by Alexander van der Vekens, 19-Oct-2017.)
|
![( (](lp.gif) ![_V _V](rmcv.gif) ![( (](lp.gif) ![( (](lp.gif) ![A A](_ca.gif) ![{ {](lbrace.gif) ![ps ps](_psi.gif) ![_V _V](rmcv.gif) ![( (](lp.gif) ![{ {](lbrace.gif) ![<.
<.](langle.gif) ![x x](_x.gif) ![y y](_y.gif) ![( (](lp.gif) ![ps ps](_psi.gif) ![) )](rp.gif) ![_V _V](rmcv.gif) ![) )](rp.gif) |
|
Theorem | opabex3 6117* |
Existence of an ordered pair abstraction. (Contributed by Jeff Madsen,
2-Sep-2009.)
|
![( (](lp.gif)
![{ {](lbrace.gif) ![ph ph](_varphi.gif) ![_V _V](rmcv.gif) ![{
{](lbrace.gif) ![<. <.](langle.gif) ![x x](_x.gif) ![y y](_y.gif) ![( (](lp.gif) ![ph ph](_varphi.gif) ![) )](rp.gif)
![_V _V](rmcv.gif) |
|
Theorem | iunex 6118* |
The existence of an indexed union. is normally a free-variable
parameter in the class expression substituted for , which can be
read informally as ![B B](_cb.gif) ![( (](lp.gif) ![x x](_x.gif) . (Contributed by NM, 13-Oct-2003.)
|
![U_ U_](_cupbar.gif)
![_V _V](rmcv.gif) |
|
Theorem | abrexex2 6119* |
Existence of an existentially restricted class abstraction. is
normally has free-variable parameters and . See also
abrexex 6112. (Contributed by NM, 12-Sep-2004.)
|
![{ {](lbrace.gif) ![ph ph](_varphi.gif) ![{ {](lbrace.gif) ![E. E.](exists.gif) ![ph ph](_varphi.gif) ![_V _V](rmcv.gif) |
|
Theorem | abexssex 6120* |
Existence of a class abstraction with an existentially quantified
expression. Both and can be
free in .
(Contributed
by NM, 29-Jul-2006.)
|
![{ {](lbrace.gif) ![ph ph](_varphi.gif) ![{ {](lbrace.gif) ![E. E.](exists.gif) ![x x](_x.gif) ![( (](lp.gif) ![ph ph](_varphi.gif) ![) )](rp.gif)
![_V _V](rmcv.gif) |
|
Theorem | abexex 6121* |
A condition where a class builder continues to exist after its wff is
existentially quantified. (Contributed by NM, 4-Mar-2007.)
|
![( (](lp.gif) ![A A](_ca.gif) ![{
{](lbrace.gif) ![ph ph](_varphi.gif) ![{
{](lbrace.gif) ![E. E.](exists.gif) ![x x](_x.gif) ![ph ph](_varphi.gif) ![_V _V](rmcv.gif) |
|
Theorem | oprabexd 6122* |
Existence of an operator abstraction. (Contributed by Jeff Madsen,
2-Sep-2009.)
|
![( (](lp.gif) ![_V _V](rmcv.gif) ![( (](lp.gif) ![_V _V](rmcv.gif) ![( (](lp.gif) ![(
(](lp.gif)
![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) ![E* E*](_em1.gif) ![z z](_z.gif) ![ps ps](_psi.gif) ![( (](lp.gif) ![{ {](lbrace.gif) ![<. <.](langle.gif) ![<.
<.](langle.gif) ![x x](_x.gif) ![y y](_y.gif) ![>. >.](rangle.gif) ![z z](_z.gif)
![( (](lp.gif) ![(
(](lp.gif)
![B B](_cb.gif) ![ps ps](_psi.gif) ![) )](rp.gif) ![} }](rbrace.gif) ![( (](lp.gif) ![_V _V](rmcv.gif) ![) )](rp.gif) |
|
Theorem | oprabex 6123* |
Existence of an operation class abstraction. (Contributed by NM,
19-Oct-2004.)
|
![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif) ![E* E*](_em1.gif) ![z z](_z.gif) ![ph ph](_varphi.gif) ![{ {](lbrace.gif) ![<. <.](langle.gif) ![<.
<.](langle.gif) ![x x](_x.gif) ![y y](_y.gif) ![>. >.](rangle.gif) ![z z](_z.gif)
![( (](lp.gif) ![(
(](lp.gif)
![B B](_cb.gif) ![ph ph](_varphi.gif) ![) )](rp.gif) ![_V _V](rmcv.gif) |
|
Theorem | oprabex3 6124* |
Existence of an operation class abstraction (special case).
(Contributed by NM, 19-Oct-2004.)
|
![{ {](lbrace.gif) ![<. <.](langle.gif) ![<. <.](langle.gif) ![x x](_x.gif) ![y y](_y.gif) ![>. >.](rangle.gif) ![z z](_z.gif) ![( (](lp.gif) ![( (](lp.gif) ![( (](lp.gif) ![H H](_ch.gif)
![( (](lp.gif) ![H H](_ch.gif) ![) )](rp.gif) ![E. E.](exists.gif) ![w w](_w.gif) ![E. E.](exists.gif) ![v v](_v.gif) ![E. E.](exists.gif) ![u u](_u.gif) ![E. E.](exists.gif) ![f f](_f.gif) ![( (](lp.gif) ![( (](lp.gif) ![<. <.](langle.gif) ![w w](_w.gif) ![v v](_v.gif)
![<. <.](langle.gif) ![u u](_u.gif) ![f f](_f.gif) ![>. >.](rangle.gif) ![R R](_cr.gif) ![) )](rp.gif) ![) )](rp.gif) ![_V _V](rmcv.gif) |
|
Theorem | oprabrexex2 6125* |
Existence of an existentially restricted operation abstraction.
(Contributed by Jeff Madsen, 11-Jun-2010.)
|
![{ {](lbrace.gif) ![<. <.](langle.gif) ![<. <.](langle.gif) ![x x](_x.gif)
![y y](_y.gif) ![>. >.](rangle.gif) ![z z](_z.gif)
![ph ph](_varphi.gif) ![{ {](lbrace.gif) ![<.
<.](langle.gif) ![<. <.](langle.gif) ![x x](_x.gif) ![y y](_y.gif) ![>. >.](rangle.gif) ![z z](_z.gif) ![E. E.](exists.gif)
![ph ph](_varphi.gif) ![_V _V](rmcv.gif) |
|
Theorem | ab2rexex 6126* |
Existence of a class abstraction of existentially restricted sets.
Variables and
are normally
free-variable parameters in the
class expression substituted for , which can be thought of as
![C C](_cc.gif) ![( (](lp.gif) ![x x](_x.gif) ![y y](_y.gif) . See comments for abrexex 6112. (Contributed by NM,
20-Sep-2011.)
|
![{
{](lbrace.gif) ![E. E.](exists.gif)
![E. E.](exists.gif) ![C C](_cc.gif)
![_V _V](rmcv.gif) |
|
Theorem | ab2rexex2 6127* |
Existence of an existentially restricted class abstraction.
normally has free-variable parameters , , and .
Compare abrexex2 6119. (Contributed by NM, 20-Sep-2011.)
|
![{ {](lbrace.gif) ![ph
ph](_varphi.gif)
![{ {](lbrace.gif) ![E. E.](exists.gif) ![E. E.](exists.gif)
![ph ph](_varphi.gif) ![_V _V](rmcv.gif) |
|
Theorem | xpexgALT 6128 |
The cross product of two sets is a set. Proposition 6.2 of
[TakeutiZaring] p. 23. This
version is proven using Replacement; see
xpexg 4737 for a version that uses the Power Set axiom
instead.
(Contributed by Mario Carneiro, 20-May-2013.)
(Proof modification is discouraged.) (New usage is discouraged.)
|
![( (](lp.gif) ![( (](lp.gif) ![W W](_cw.gif) ![( (](lp.gif) ![B B](_cb.gif)
![_V _V](rmcv.gif) ![) )](rp.gif) |
|
Theorem | offval3 6129* |
General value of ![( (](lp.gif) ![o o](circ.gif) ![F F](subf.gif) ![R R](_cr.gif) ![G G](_cg.gif) with no assumptions on functionality
of and . (Contributed by Stefan
O'Rear, 24-Jan-2015.)
|
![( (](lp.gif) ![( (](lp.gif) ![W W](_cw.gif) ![( (](lp.gif) ![o o](circ.gif) ![F F](subf.gif) ![R R](_cr.gif) ![G G](_cg.gif) ![( (](lp.gif) ![( (](lp.gif) ![G G](_cg.gif) ![( (](lp.gif) ![( (](lp.gif) ![F F](_cf.gif) ![` `](backtick.gif) ![x x](_x.gif) ![) )](rp.gif) ![R R](_cr.gif) ![( (](lp.gif) ![G G](_cg.gif) ![` `](backtick.gif) ![x x](_x.gif) ![) )](rp.gif) ![) )](rp.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | offres 6130 |
Pointwise combination commutes with restriction. (Contributed by Stefan
O'Rear, 24-Jan-2015.)
|
![( (](lp.gif) ![( (](lp.gif) ![W W](_cw.gif) ![( (](lp.gif) ![( (](lp.gif) ![o o](circ.gif) ![F F](subf.gif) ![R R](_cr.gif) ![G G](_cg.gif) ![D D](_cd.gif) ![( (](lp.gif) ![( (](lp.gif) ![D D](_cd.gif) ![o o](circ.gif) ![F F](subf.gif) ![R R](_cr.gif) ![( (](lp.gif)
![D D](_cd.gif) ![) )](rp.gif) ![)
)](rp.gif) ![) )](rp.gif) |
|
Theorem | ofmres 6131* |
Equivalent expressions for a restriction of the function operation map.
Unlike ![o o](circ.gif) ![F F](subf.gif) which is a proper class, ![o o](circ.gif) ![F F](subf.gif) ![( (](lp.gif)
![B B](_cb.gif) ![)
)](rp.gif) can
be a set by ofmresex 6132, allowing it to be used as a function or
structure argument. By ofmresval 6088, the restricted operation map
values are the same as the original values, allowing theorems for
![o o](circ.gif) ![F F](subf.gif) to be reused. (Contributed by NM, 20-Oct-2014.)
|
![o o](circ.gif) ![F F](subf.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif)
![( (](lp.gif) ![A A](_ca.gif)
![( (](lp.gif) ![o o](circ.gif) ![F F](subf.gif) ![R R](_cr.gif) ![g g](_g.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | ofmresex 6132 |
Existence of a restriction of the function operation map. (Contributed
by NM, 20-Oct-2014.)
|
![( (](lp.gif) ![V V](_cv.gif) ![( (](lp.gif) ![W W](_cw.gif) ![( (](lp.gif) ![o o](circ.gif) ![F F](subf.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) ![_V _V](rmcv.gif) ![) )](rp.gif) |
|
2.6.15 First and second members of an ordered
pair
|
|
Syntax | c1st 6133 |
Extend the definition of a class to include the first member an ordered
pair function.
|
![1st 1st](_1st.gif) |
|
Syntax | c2nd 6134 |
Extend the definition of a class to include the second member an ordered
pair function.
|
![2nd 2nd](_2nd.gif) |
|
Definition | df-1st 6135 |
Define a function that extracts the first member, or abscissa, of an
ordered pair. Theorem op1st 6141 proves that it does this. For example,
(![1st 1st](_1st.gif) ![` `](backtick.gif) 3 , 4 ) = 3 . Equivalent to Definition
5.13 (i) of
[Monk1] p. 52 (compare op1sta 5106 and op1stb 4475). The notation is the same
as Monk's. (Contributed by NM, 9-Oct-2004.)
|
![( (](lp.gif) ![U. U.](bigcup.gif) ![{ {](lbrace.gif) ![x x](_x.gif) ![} }](rbrace.gif) ![) )](rp.gif) |
|
Definition | df-2nd 6136 |
Define a function that extracts the second member, or ordinate, of an
ordered pair. Theorem op2nd 6142 proves that it does this. For example,
![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) 3 , 4 ) = 4 . Equivalent to Definition 5.13 (ii)
of [Monk1] p. 52 (compare op2nda 5109 and op2ndb 5108). The notation is the
same as Monk's. (Contributed by NM, 9-Oct-2004.)
|
![( (](lp.gif) ![U. U.](bigcup.gif) ![{ {](lbrace.gif) ![x x](_x.gif) ![} }](rbrace.gif) ![) )](rp.gif) |
|
Theorem | 1stvalg 6137 |
The value of the function that extracts the first member of an ordered
pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro,
8-Sep-2013.)
|
![( (](lp.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![A A](_ca.gif)
![U. U.](bigcup.gif) ![{ {](lbrace.gif) ![A A](_ca.gif) ![} }](rbrace.gif) ![) )](rp.gif) |
|
Theorem | 2ndvalg 6138 |
The value of the function that extracts the second member of an ordered
pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro,
8-Sep-2013.)
|
![( (](lp.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![A A](_ca.gif)
![U. U.](bigcup.gif) ![{ {](lbrace.gif) ![A A](_ca.gif) ![} }](rbrace.gif) ![) )](rp.gif) |
|
Theorem | 1st0 6139 |
The value of the first-member function at the empty set. (Contributed by
NM, 23-Apr-2007.)
|
![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![(/) (/)](varnothing.gif) ![(/) (/)](varnothing.gif) |
|
Theorem | 2nd0 6140 |
The value of the second-member function at the empty set. (Contributed by
NM, 23-Apr-2007.)
|
![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![(/) (/)](varnothing.gif) ![(/) (/)](varnothing.gif) |
|
Theorem | op1st 6141 |
Extract the first member of an ordered pair. (Contributed by NM,
5-Oct-2004.)
|
![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![<. <.](langle.gif) ![A A](_ca.gif) ![B B](_cb.gif) ![>. >.](rangle.gif) ![A A](_ca.gif) |
|
Theorem | op2nd 6142 |
Extract the second member of an ordered pair. (Contributed by NM,
5-Oct-2004.)
|
![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![<. <.](langle.gif) ![A A](_ca.gif) ![B B](_cb.gif) ![>. >.](rangle.gif) ![B B](_cb.gif) |
|
Theorem | op1std 6143 |
Extract the first member of an ordered pair. (Contributed by Mario
Carneiro, 31-Aug-2015.)
|
![( (](lp.gif) ![<. <.](langle.gif) ![A A](_ca.gif) ![B B](_cb.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![C C](_cc.gif) ![A A](_ca.gif) ![) )](rp.gif) |
|
Theorem | op2ndd 6144 |
Extract the second member of an ordered pair. (Contributed by Mario
Carneiro, 31-Aug-2015.)
|
![( (](lp.gif) ![<. <.](langle.gif) ![A A](_ca.gif) ![B B](_cb.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![C C](_cc.gif) ![B B](_cb.gif) ![) )](rp.gif) |
|
Theorem | op1stg 6145 |
Extract the first member of an ordered pair. (Contributed by NM,
19-Jul-2005.)
|
![( (](lp.gif) ![( (](lp.gif) ![W W](_cw.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![<. <.](langle.gif) ![A A](_ca.gif) ![B B](_cb.gif) ![>. >.](rangle.gif) ![A A](_ca.gif) ![) )](rp.gif) |
|
Theorem | op2ndg 6146 |
Extract the second member of an ordered pair. (Contributed by NM,
19-Jul-2005.)
|
![( (](lp.gif) ![( (](lp.gif) ![W W](_cw.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![<. <.](langle.gif) ![A A](_ca.gif) ![B B](_cb.gif) ![>. >.](rangle.gif) ![B B](_cb.gif) ![) )](rp.gif) |
|
Theorem | ot1stg 6147 |
Extract the first member of an ordered triple. (Due to infrequent
usage, it isn't worthwhile at this point to define special extractors
for triples, so we reuse the ordered pair extractors for ot1stg 6147,
ot2ndg 6148, ot3rdgg 6149.) (Contributed by NM, 3-Apr-2015.) (Revised
by
Mario Carneiro, 2-May-2015.)
|
![( (](lp.gif) ![( (](lp.gif) ![X X](_cx.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![<. <.](langle.gif) ![A A](_ca.gif) ![B B](_cb.gif) ![C C](_cc.gif) ![>. >.](rangle.gif) ![) )](rp.gif) ![A A](_ca.gif) ![) )](rp.gif) |
|
Theorem | ot2ndg 6148 |
Extract the second member of an ordered triple. (See ot1stg 6147 comment.)
(Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro,
2-May-2015.)
|
![( (](lp.gif) ![( (](lp.gif) ![X X](_cx.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![<. <.](langle.gif) ![A A](_ca.gif) ![B B](_cb.gif) ![C C](_cc.gif) ![>. >.](rangle.gif) ![) )](rp.gif) ![B B](_cb.gif) ![) )](rp.gif) |
|
Theorem | ot3rdgg 6149 |
Extract the third member of an ordered triple. (See ot1stg 6147 comment.)
(Contributed by NM, 3-Apr-2015.)
|
![( (](lp.gif) ![( (](lp.gif) ![X X](_cx.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![<. <.](langle.gif) ![A A](_ca.gif) ![B B](_cb.gif)
![C C](_cc.gif) ![>. >.](rangle.gif) ![C C](_cc.gif) ![) )](rp.gif) |
|
Theorem | 1stval2 6150 |
Alternate value of the function that extracts the first member of an
ordered pair. Definition 5.13 (i) of [Monk1] p. 52. (Contributed by
NM, 18-Aug-2006.)
|
![( (](lp.gif) ![( (](lp.gif) ![_V _V](rmcv.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![`
`](backtick.gif) ![A A](_ca.gif) ![|^| |^|](bigcap.gif) ![|^| |^|](bigcap.gif) ![A A](_ca.gif) ![) )](rp.gif) |
|
Theorem | 2ndval2 6151 |
Alternate value of the function that extracts the second member of an
ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by
NM, 18-Aug-2006.)
|
![( (](lp.gif) ![( (](lp.gif) ![_V _V](rmcv.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![`
`](backtick.gif) ![A A](_ca.gif) ![|^| |^|](bigcap.gif) ![|^| |^|](bigcap.gif) ![|^| |^|](bigcap.gif) ![`' `'](_cnv.gif) ![{ {](lbrace.gif) ![A A](_ca.gif) ![} }](rbrace.gif) ![) )](rp.gif) |
|
Theorem | fo1st 6152 |
The function
maps the universe onto the universe. (Contributed
by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
|
![1st
1st](_1st.gif) ![: :](colon.gif) ![_V _V](rmcv.gif) ![-onto-> -onto->](onto.gif) ![_V _V](rmcv.gif) |
|
Theorem | fo2nd 6153 |
The function
maps the universe onto the universe. (Contributed
by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
|
![2nd
2nd](_2nd.gif) ![: :](colon.gif) ![_V _V](rmcv.gif) ![-onto-> -onto->](onto.gif) ![_V _V](rmcv.gif) |
|
Theorem | f1stres 6154 |
Mapping of a restriction of the (first member of an ordered
pair) function. (Contributed by NM, 11-Oct-2004.) (Revised by Mario
Carneiro, 8-Sep-2013.)
|
![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) ![: :](colon.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) ![--> -->](longrightarrow.gif) ![A A](_ca.gif) |
|
Theorem | f2ndres 6155 |
Mapping of a restriction of the (second member of an ordered
pair) function. (Contributed by NM, 7-Aug-2006.) (Revised by Mario
Carneiro, 8-Sep-2013.)
|
![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) ![: :](colon.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) ![--> -->](longrightarrow.gif) ![B B](_cb.gif) |
|
Theorem | fo1stresm 6156* |
Onto mapping of a restriction of the (first member of an ordered
pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
|
![( (](lp.gif) ![E. E.](exists.gif) ![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) ![: :](colon.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) ![-onto-> -onto->](onto.gif) ![A A](_ca.gif) ![) )](rp.gif) |
|
Theorem | fo2ndresm 6157* |
Onto mapping of a restriction of the (second member of an
ordered pair) function. (Contributed by Jim Kingdon, 24-Jan-2019.)
|
![( (](lp.gif) ![E. E.](exists.gif) ![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) ![: :](colon.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) ![-onto-> -onto->](onto.gif) ![B B](_cb.gif) ![) )](rp.gif) |
|
Theorem | 1stcof 6158 |
Composition of the first member function with another function.
(Contributed by NM, 12-Oct-2007.)
|
![( (](lp.gif) ![F F](_cf.gif) ![: :](colon.gif) ![A A](_ca.gif) ![--> -->](longrightarrow.gif) ![( (](lp.gif)
![C C](_cc.gif) ![( (](lp.gif) ![F F](_cf.gif) ![) )](rp.gif) ![: :](colon.gif) ![A A](_ca.gif) ![--> -->](longrightarrow.gif) ![B B](_cb.gif) ![) )](rp.gif) |
|
Theorem | 2ndcof 6159 |
Composition of the second member function with another function.
(Contributed by FL, 15-Oct-2012.)
|
![( (](lp.gif) ![F F](_cf.gif) ![: :](colon.gif) ![A A](_ca.gif) ![--> -->](longrightarrow.gif) ![( (](lp.gif)
![C C](_cc.gif) ![( (](lp.gif) ![F F](_cf.gif) ![) )](rp.gif) ![: :](colon.gif) ![A A](_ca.gif) ![--> -->](longrightarrow.gif) ![C C](_cc.gif) ![) )](rp.gif) |
|
Theorem | xp1st 6160 |
Location of the first element of a Cartesian product. (Contributed by
Jeff Madsen, 2-Sep-2009.)
|
![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![`
`](backtick.gif) ![A A](_ca.gif) ![B B](_cb.gif) ![) )](rp.gif) |
|
Theorem | xp2nd 6161 |
Location of the second element of a Cartesian product. (Contributed by
Jeff Madsen, 2-Sep-2009.)
|
![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![`
`](backtick.gif) ![A A](_ca.gif) ![C C](_cc.gif) ![) )](rp.gif) |
|
Theorem | 1stexg 6162 |
Existence of the first member of a set. (Contributed by Jim Kingdon,
26-Jan-2019.)
|
![( (](lp.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![A A](_ca.gif)
![_V _V](rmcv.gif) ![) )](rp.gif) |
|
Theorem | 2ndexg 6163 |
Existence of the first member of a set. (Contributed by Jim Kingdon,
26-Jan-2019.)
|
![( (](lp.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![A A](_ca.gif)
![_V _V](rmcv.gif) ![) )](rp.gif) |
|
Theorem | elxp6 6164 |
Membership in a cross product. This version requires no quantifiers or
dummy variables. See also elxp4 5112. (Contributed by NM, 9-Oct-2004.)
|
![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![( (](lp.gif) ![<. <.](langle.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![A A](_ca.gif) ![) )](rp.gif)
![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![A A](_ca.gif) ![) )](rp.gif) ![( (](lp.gif) ![(
(](lp.gif) ![1st 1st](_1st.gif) ![`
`](backtick.gif) ![A A](_ca.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![A A](_ca.gif) ![C C](_cc.gif) ![) )](rp.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | elxp7 6165 |
Membership in a cross product. This version requires no quantifiers or
dummy variables. See also elxp4 5112. (Contributed by NM, 19-Aug-2006.)
|
![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![( (](lp.gif) ![( (](lp.gif) ![_V _V](rmcv.gif) ![( (](lp.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![A A](_ca.gif)
![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![`
`](backtick.gif) ![A A](_ca.gif) ![C C](_cc.gif) ![) )](rp.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | oprssdmm 6166* |
Domain of closure of an operation. (Contributed by Jim Kingdon,
23-Oct-2023.)
|
![( (](lp.gif) ![( (](lp.gif) ![S S](_cs.gif) ![E. E.](exists.gif)
![u u](_u.gif) ![( (](lp.gif) ![(
(](lp.gif)
![( (](lp.gif) ![S S](_cs.gif) ![) )](rp.gif) ![( (](lp.gif) ![x x](_x.gif) ![F F](_cf.gif) ![y y](_y.gif) ![S S](_cs.gif) ![( (](lp.gif)
![F F](_cf.gif) ![( (](lp.gif) ![( (](lp.gif) ![S S](_cs.gif)
![F F](_cf.gif) ![) )](rp.gif) |
|
Theorem | eqopi 6167 |
Equality with an ordered pair. (Contributed by NM, 15-Dec-2008.)
(Revised by Mario Carneiro, 23-Feb-2014.)
|
![( (](lp.gif) ![( (](lp.gif) ![( (](lp.gif)
![W W](_cw.gif) ![( (](lp.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![A A](_ca.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![A A](_ca.gif)
![C C](_cc.gif) ![) )](rp.gif)
![<. <.](langle.gif) ![B B](_cb.gif) ![C C](_cc.gif) ![>. >.](rangle.gif) ![) )](rp.gif) |
|
Theorem | xp2 6168* |
Representation of cross product based on ordered pair component
functions. (Contributed by NM, 16-Sep-2006.)
|
![( (](lp.gif) ![B B](_cb.gif)
![{ {](lbrace.gif) ![( (](lp.gif) ![_V _V](rmcv.gif)
![( (](lp.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![x x](_x.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![x x](_x.gif) ![B B](_cb.gif) ![) )](rp.gif) ![} }](rbrace.gif) |
|
Theorem | unielxp 6169 |
The membership relation for a cross product is inherited by union.
(Contributed by NM, 16-Sep-2006.)
|
![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![U. U.](bigcup.gif)
![U. U.](bigcup.gif) ![( (](lp.gif) ![C C](_cc.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | 1st2nd2 6170 |
Reconstruction of a member of a cross product in terms of its ordered pair
components. (Contributed by NM, 20-Oct-2013.)
|
![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif)
![<. <.](langle.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![A A](_ca.gif) ![) )](rp.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![A A](_ca.gif) ![) )](rp.gif) ![>. >.](rangle.gif) ![) )](rp.gif) |
|
Theorem | xpopth 6171 |
An ordered pair theorem for members of cross products. (Contributed by
NM, 20-Jun-2007.)
|
![( (](lp.gif) ![( (](lp.gif) ![( (](lp.gif)
![D D](_cd.gif) ![( (](lp.gif) ![S S](_cs.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![A A](_ca.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![`
`](backtick.gif) ![B B](_cb.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![A A](_ca.gif)
![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![B B](_cb.gif) ![) )](rp.gif)
![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | eqop 6172 |
Two ways to express equality with an ordered pair. (Contributed by NM,
3-Sep-2007.) (Proof shortened by Mario Carneiro, 26-Apr-2015.)
|
![( (](lp.gif) ![( (](lp.gif) ![W W](_cw.gif) ![( (](lp.gif)
![<. <.](langle.gif) ![B B](_cb.gif) ![C C](_cc.gif) ![( (](lp.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![A A](_ca.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![A A](_ca.gif)
![C C](_cc.gif) ![) )](rp.gif) ![)
)](rp.gif) ![) )](rp.gif) |
|
Theorem | eqop2 6173 |
Two ways to express equality with an ordered pair. (Contributed by NM,
25-Feb-2014.)
|
![( (](lp.gif) ![<. <.](langle.gif) ![B B](_cb.gif) ![C C](_cc.gif) ![( (](lp.gif) ![( (](lp.gif) ![_V _V](rmcv.gif) ![( (](lp.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![A A](_ca.gif)
![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![`
`](backtick.gif) ![A A](_ca.gif) ![C C](_cc.gif) ![) )](rp.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | op1steq 6174* |
Two ways of expressing that an element is the first member of an ordered
pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro,
23-Feb-2014.)
|
![( (](lp.gif) ![( (](lp.gif) ![W W](_cw.gif) ![( (](lp.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![A A](_ca.gif)
![E. E.](exists.gif) ![<. <.](langle.gif) ![B B](_cb.gif) ![x x](_x.gif) ![>. >.](rangle.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | 2nd1st 6175 |
Swap the members of an ordered pair. (Contributed by NM, 31-Dec-2014.)
|
![( (](lp.gif) ![( (](lp.gif) ![C C](_cc.gif) ![U. U.](bigcup.gif) ![`' `'](_cnv.gif) ![{ {](lbrace.gif) ![A A](_ca.gif) ![<. <.](langle.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![A A](_ca.gif) ![) )](rp.gif)
![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![A A](_ca.gif) ![) )](rp.gif) ![>. >.](rangle.gif) ![) )](rp.gif) |
|
Theorem | 1st2nd 6176 |
Reconstruction of a member of a relation in terms of its ordered pair
components. (Contributed by NM, 29-Aug-2006.)
|
![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif) ![<. <.](langle.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![A A](_ca.gif) ![) )](rp.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![A A](_ca.gif) ![) )](rp.gif) ![>. >.](rangle.gif) ![) )](rp.gif) |
|
Theorem | 1stdm 6177 |
The first ordered pair component of a member of a relation belongs to the
domain of the relation. (Contributed by NM, 17-Sep-2006.)
|
![( (](lp.gif) ![( (](lp.gif) ![R R](_cr.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![A A](_ca.gif)
![R R](_cr.gif) ![) )](rp.gif) |
|
Theorem | 2ndrn 6178 |
The second ordered pair component of a member of a relation belongs to the
range of the relation. (Contributed by NM, 17-Sep-2006.)
|
![( (](lp.gif) ![( (](lp.gif) ![R R](_cr.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![A A](_ca.gif)
![R R](_cr.gif) ![) )](rp.gif) |
|
Theorem | 1st2ndbr 6179 |
Express an element of a relation as a relationship between first and
second components. (Contributed by Mario Carneiro, 22-Jun-2016.)
|
![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![A A](_ca.gif) ![) )](rp.gif) ![B B](_cb.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![A A](_ca.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | releldm2 6180* |
Two ways of expressing membership in the domain of a relation.
(Contributed by NM, 22-Sep-2013.)
|
![( (](lp.gif) ![( (](lp.gif) ![E. E.](exists.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![`
`](backtick.gif) ![x x](_x.gif) ![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | reldm 6181* |
An expression for the domain of a relation. (Contributed by NM,
22-Sep-2013.)
|
![( (](lp.gif) ![( (](lp.gif)
![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![x x](_x.gif) ![) )](rp.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | sbcopeq1a 6182 |
Equality theorem for substitution of a class for an ordered pair (analog
of sbceq1a 2972 that avoids the existential quantifiers of copsexg 4241).
(Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro,
31-Aug-2015.)
|
![( (](lp.gif) ![<. <.](langle.gif) ![x x](_x.gif) ![y y](_y.gif) ![( (](lp.gif) ![[. [.](_dlbrack.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![A A](_ca.gif) ![x x](_x.gif) ![]. ].](_drbrack.gif) ![[. [.](_dlbrack.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![A A](_ca.gif) ![y y](_y.gif) ![]. ].](_drbrack.gif)
![ph ph](_varphi.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | csbopeq1a 6183 |
Equality theorem for substitution of a class for an ordered pair
![<. <.](langle.gif) ![x x](_x.gif) ![y y](_y.gif)
in (analog of csbeq1a 3066). (Contributed by NM,
19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
|
![( (](lp.gif) ![<. <.](langle.gif) ![x x](_x.gif) ![y y](_y.gif) ![[_ [_](_ulbrack.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![A A](_ca.gif) ![x x](_x.gif) ![]_ ]_](_urbrack.gif) ![[_ [_](_ulbrack.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![A A](_ca.gif) ![y y](_y.gif) ![]_ ]_](_urbrack.gif)
![B B](_cb.gif) ![) )](rp.gif) |
|
Theorem | dfopab2 6184* |
A way to define an ordered-pair class abstraction without using
existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by
Mario Carneiro, 31-Aug-2015.)
|
![{
{](lbrace.gif) ![<. <.](langle.gif) ![x x](_x.gif) ![y y](_y.gif) ![ph ph](_varphi.gif) ![{ {](lbrace.gif)
![( (](lp.gif) ![_V _V](rmcv.gif) ![[.
[.](_dlbrack.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![z z](_z.gif)
![x x](_x.gif) ![]. ].](_drbrack.gif) ![[. [.](_dlbrack.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![z z](_z.gif) ![y y](_y.gif) ![]. ].](_drbrack.gif) ![ph ph](_varphi.gif) ![} }](rbrace.gif) |
|
Theorem | dfoprab3s 6185* |
A way to define an operation class abstraction without using existential
quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario
Carneiro, 31-Aug-2015.)
|
![{
{](lbrace.gif) ![<. <.](langle.gif) ![<. <.](langle.gif) ![x x](_x.gif) ![y y](_y.gif) ![>. >.](rangle.gif) ![z z](_z.gif) ![ph ph](_varphi.gif) ![{ {](lbrace.gif) ![<. <.](langle.gif) ![w w](_w.gif) ![z z](_z.gif) ![( (](lp.gif) ![( (](lp.gif) ![_V _V](rmcv.gif)
![[. [.](_dlbrack.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![w w](_w.gif) ![x x](_x.gif) ![]. ].](_drbrack.gif) ![[. [.](_dlbrack.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![w w](_w.gif) ![y y](_y.gif) ![]. ].](_drbrack.gif) ![ph ph](_varphi.gif) ![) )](rp.gif) ![} }](rbrace.gif) |
|
Theorem | dfoprab3 6186* |
Operation class abstraction expressed without existential quantifiers.
(Contributed by NM, 16-Dec-2008.)
|
![( (](lp.gif) ![<. <.](langle.gif) ![x x](_x.gif) ![y y](_y.gif) ![( (](lp.gif) ![ps ps](_psi.gif) ![) )](rp.gif) ![{ {](lbrace.gif) ![<. <.](langle.gif) ![w w](_w.gif) ![z z](_z.gif) ![( (](lp.gif) ![( (](lp.gif) ![_V _V](rmcv.gif)
![ph ph](_varphi.gif) ![) )](rp.gif)
![{ {](lbrace.gif) ![<. <.](langle.gif) ![<. <.](langle.gif) ![x x](_x.gif) ![y y](_y.gif) ![>. >.](rangle.gif) ![z z](_z.gif) ![ps ps](_psi.gif) ![} }](rbrace.gif) |
|
Theorem | dfoprab4 6187* |
Operation class abstraction expressed without existential quantifiers.
(Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro,
31-Aug-2015.)
|
![( (](lp.gif) ![<. <.](langle.gif) ![x x](_x.gif) ![y y](_y.gif) ![( (](lp.gif) ![ps ps](_psi.gif) ![) )](rp.gif) ![{ {](lbrace.gif) ![<. <.](langle.gif) ![w w](_w.gif) ![z z](_z.gif) ![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif)
![ph ph](_varphi.gif) ![) )](rp.gif)
![{ {](lbrace.gif) ![<. <.](langle.gif) ![<. <.](langle.gif) ![x x](_x.gif) ![y y](_y.gif) ![>. >.](rangle.gif) ![z z](_z.gif) ![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif) ![ps ps](_psi.gif) ![) )](rp.gif) ![} }](rbrace.gif) |
|
Theorem | dfoprab4f 6188* |
Operation class abstraction expressed without existential quantifiers.
(Unnecessary distinct variable restrictions were removed by David
Abernethy, 19-Jun-2012.) (Contributed by NM, 20-Dec-2008.) (Revised by
Mario Carneiro, 31-Aug-2015.)
|
![F/
F/](finv.gif) ![x x](_x.gif) ![F/ F/](finv.gif) ![y y](_y.gif) ![( (](lp.gif)
![<. <.](langle.gif) ![x x](_x.gif) ![y y](_y.gif) ![( (](lp.gif) ![ps ps](_psi.gif) ![) )](rp.gif) ![{ {](lbrace.gif) ![<. <.](langle.gif) ![w w](_w.gif) ![z z](_z.gif) ![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif)
![ph ph](_varphi.gif) ![) )](rp.gif)
![{ {](lbrace.gif) ![<. <.](langle.gif) ![<. <.](langle.gif) ![x x](_x.gif) ![y y](_y.gif) ![>. >.](rangle.gif) ![z z](_z.gif) ![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif) ![ps ps](_psi.gif) ![) )](rp.gif) ![} }](rbrace.gif) |
|
Theorem | dfxp3 6189* |
Define the cross product of three classes. Compare df-xp 4629.
(Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro,
3-Nov-2015.)
|
![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif)
![C C](_cc.gif) ![{ {](lbrace.gif) ![<. <.](langle.gif) ![<. <.](langle.gif) ![x x](_x.gif) ![y y](_y.gif) ![>. >.](rangle.gif) ![z z](_z.gif) ![( (](lp.gif)
![C C](_cc.gif) ![) )](rp.gif) ![} }](rbrace.gif) |
|
Theorem | elopabi 6190* |
A consequence of membership in an ordered-pair class abstraction, using
ordered pair extractors. (Contributed by NM, 29-Aug-2006.)
|
![( (](lp.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![`
`](backtick.gif) ![A A](_ca.gif) ![( (](lp.gif) ![ps ps](_psi.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![A A](_ca.gif) ![( (](lp.gif) ![ch ch](_chi.gif) ![) )](rp.gif) ![( (](lp.gif) ![{ {](lbrace.gif) ![<.
<.](langle.gif) ![x x](_x.gif) ![y y](_y.gif) ![ph
ph](_varphi.gif)
![ch ch](_chi.gif) ![) )](rp.gif) |
|
Theorem | eloprabi 6191* |
A consequence of membership in an operation class abstraction, using
ordered pair extractors. (Contributed by NM, 6-Nov-2006.) (Revised by
David Abernethy, 19-Jun-2012.)
|
![( (](lp.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![`
`](backtick.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![A A](_ca.gif) ![) )](rp.gif) ![( (](lp.gif) ![ps ps](_psi.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![` `](backtick.gif) ![A A](_ca.gif) ![) )](rp.gif)
![( (](lp.gif) ![ch ch](_chi.gif) ![) )](rp.gif) ![( (](lp.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![A A](_ca.gif) ![( (](lp.gif) ![th th](_theta.gif) ![) )](rp.gif) ![( (](lp.gif) ![{ {](lbrace.gif) ![<.
<.](langle.gif) ![<. <.](langle.gif) ![x x](_x.gif) ![y y](_y.gif) ![>. >.](rangle.gif) ![z z](_z.gif) ![ph ph](_varphi.gif) ![th th](_theta.gif) ![) )](rp.gif) |
|
Theorem | mpomptsx 6192* |
Express a two-argument function as a one-argument function, or
vice-versa. (Contributed by Mario Carneiro, 24-Dec-2016.)
|
![( (](lp.gif) ![A A](_ca.gif)
![C C](_cc.gif)
![( (](lp.gif) ![U_ U_](_cupbar.gif) ![( (](lp.gif) ![{ {](lbrace.gif) ![x x](_x.gif) ![B B](_cb.gif) ![[_ [_](_ulbrack.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![`
`](backtick.gif) ![z z](_z.gif) ![x x](_x.gif) ![]_ ]_](_urbrack.gif) ![[_ [_](_ulbrack.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![z z](_z.gif) ![y y](_y.gif) ![]_ ]_](_urbrack.gif) ![C C](_cc.gif) ![) )](rp.gif) |
|
Theorem | mpompts 6193* |
Express a two-argument function as a one-argument function, or
vice-versa. (Contributed by Mario Carneiro, 24-Sep-2015.)
|
![( (](lp.gif) ![A A](_ca.gif)
![C C](_cc.gif)
![( (](lp.gif) ![( (](lp.gif) ![B B](_cb.gif) ![[_ [_](_ulbrack.gif) ![( (](lp.gif) ![1st 1st](_1st.gif) ![`
`](backtick.gif) ![z z](_z.gif) ![x x](_x.gif) ![]_ ]_](_urbrack.gif) ![[_ [_](_ulbrack.gif) ![( (](lp.gif) ![2nd 2nd](_2nd.gif) ![` `](backtick.gif) ![z z](_z.gif) ![y y](_y.gif) ![]_ ]_](_urbrack.gif) ![C C](_cc.gif) ![) )](rp.gif) |
|
Theorem | dmmpossx 6194* |
The domain of a mapping is a subset of its base class. (Contributed by
Mario Carneiro, 9-Feb-2015.)
|
![( (](lp.gif) ![A A](_ca.gif) ![C C](_cc.gif)
![U_ U_](_cupbar.gif) ![( (](lp.gif) ![{ {](lbrace.gif) ![x x](_x.gif) ![B B](_cb.gif) ![) )](rp.gif) |
|
Theorem | fmpox 6195* |
Functionality, domain and codomain of a class given by the maps-to
notation, where ![B B](_cb.gif) ![( (](lp.gif) ![x x](_x.gif) is not constant but depends on .
(Contributed by NM, 29-Dec-2014.)
|
![( (](lp.gif) ![A A](_ca.gif) ![C C](_cc.gif) ![( (](lp.gif) ![A. A.](forall.gif) ![A. A.](forall.gif) ![F F](_cf.gif) ![: :](colon.gif) ![U_ U_](_cupbar.gif) ![( (](lp.gif) ![{ {](lbrace.gif) ![x x](_x.gif) ![B B](_cb.gif) ![) )](rp.gif) ![--> -->](longrightarrow.gif) ![D D](_cd.gif) ![) )](rp.gif) |
|
Theorem | fmpo 6196* |
Functionality, domain and range of a class given by the maps-to
notation. (Contributed by FL, 17-May-2010.)
|
![( (](lp.gif) ![A A](_ca.gif) ![C C](_cc.gif) ![( (](lp.gif) ![A. A.](forall.gif) ![A. A.](forall.gif) ![F F](_cf.gif) ![: :](colon.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) ![--> -->](longrightarrow.gif) ![D D](_cd.gif) ![) )](rp.gif) |
|
Theorem | fnmpo 6197* |
Functionality and domain of a class given by the maps-to notation.
(Contributed by FL, 17-May-2010.)
|
![( (](lp.gif) ![A A](_ca.gif) ![C C](_cc.gif) ![( (](lp.gif) ![A. A.](forall.gif) ![A. A.](forall.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) ![) )](rp.gif) |
|
Theorem | mpofvex 6198* |
Sufficient condition for an operation maps-to notation to be set-like.
(Contributed by Mario Carneiro, 3-Jul-2019.)
|
![( (](lp.gif) ![A A](_ca.gif) ![C C](_cc.gif) ![( (](lp.gif) ![( (](lp.gif) ![A. A.](forall.gif) ![x x](_x.gif) ![A. A.](forall.gif) ![X X](_cx.gif) ![( (](lp.gif) ![R R](_cr.gif) ![F F](_cf.gif) ![S S](_cs.gif)
![_V _V](rmcv.gif) ![) )](rp.gif) |
|
Theorem | fnmpoi 6199* |
Functionality and domain of a class given by the maps-to notation.
(Contributed by FL, 17-May-2010.)
|
![( (](lp.gif) ![A A](_ca.gif) ![C C](_cc.gif) ![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) |
|
Theorem | dmmpo 6200* |
Domain of a class given by the maps-to notation. (Contributed by FL,
17-May-2010.)
|
![( (](lp.gif) ![A A](_ca.gif) ![C C](_cc.gif)
![( (](lp.gif) ![B B](_cb.gif) ![) )](rp.gif) |