ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onunsnss GIF version

Theorem onunsnss 6978
Description: Adding a singleton to create an ordinal. (Contributed by Jim Kingdon, 20-Oct-2021.)
Assertion
Ref Expression
onunsnss ((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) → 𝐵𝐴)

Proof of Theorem onunsnss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elirr 4577 . . . . 5 ¬ 𝐵𝐵
2 elsni 3640 . . . . . . . 8 (𝑥 ∈ {𝐵} → 𝑥 = 𝐵)
32adantl 277 . . . . . . 7 ((((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) ∧ 𝑥 ∈ {𝐵}) → 𝑥 = 𝐵)
4 simplr 528 . . . . . . 7 ((((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) ∧ 𝑥 ∈ {𝐵}) → 𝑥𝐵)
53, 4eqeltrrd 2274 . . . . . 6 ((((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) ∧ 𝑥 ∈ {𝐵}) → 𝐵𝐵)
65ex 115 . . . . 5 (((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) → (𝑥 ∈ {𝐵} → 𝐵𝐵))
71, 6mtoi 665 . . . 4 (((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) → ¬ 𝑥 ∈ {𝐵})
8 snidg 3651 . . . . . . . . 9 (𝐵𝑉𝐵 ∈ {𝐵})
9 elun2 3331 . . . . . . . . 9 (𝐵 ∈ {𝐵} → 𝐵 ∈ (𝐴 ∪ {𝐵}))
108, 9syl 14 . . . . . . . 8 (𝐵𝑉𝐵 ∈ (𝐴 ∪ {𝐵}))
1110adantr 276 . . . . . . 7 ((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) → 𝐵 ∈ (𝐴 ∪ {𝐵}))
12 ontr1 4424 . . . . . . . 8 ((𝐴 ∪ {𝐵}) ∈ On → ((𝑥𝐵𝐵 ∈ (𝐴 ∪ {𝐵})) → 𝑥 ∈ (𝐴 ∪ {𝐵})))
1312adantl 277 . . . . . . 7 ((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) → ((𝑥𝐵𝐵 ∈ (𝐴 ∪ {𝐵})) → 𝑥 ∈ (𝐴 ∪ {𝐵})))
1411, 13mpan2d 428 . . . . . 6 ((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) → (𝑥𝐵𝑥 ∈ (𝐴 ∪ {𝐵})))
1514imp 124 . . . . 5 (((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐴 ∪ {𝐵}))
16 elun 3304 . . . . 5 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑥𝐴𝑥 ∈ {𝐵}))
1715, 16sylib 122 . . . 4 (((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) → (𝑥𝐴𝑥 ∈ {𝐵}))
187, 17ecased 1360 . . 3 (((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) → 𝑥𝐴)
1918ex 115 . 2 ((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) → (𝑥𝐵𝑥𝐴))
2019ssrdv 3189 1 ((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) → 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2167  cun 3155  wss 3157  {csn 3622  Oncon0 4398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator