ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onunsnss GIF version

Theorem onunsnss 6973
Description: Adding a singleton to create an ordinal. (Contributed by Jim Kingdon, 20-Oct-2021.)
Assertion
Ref Expression
onunsnss ((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) → 𝐵𝐴)

Proof of Theorem onunsnss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elirr 4573 . . . . 5 ¬ 𝐵𝐵
2 elsni 3636 . . . . . . . 8 (𝑥 ∈ {𝐵} → 𝑥 = 𝐵)
32adantl 277 . . . . . . 7 ((((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) ∧ 𝑥 ∈ {𝐵}) → 𝑥 = 𝐵)
4 simplr 528 . . . . . . 7 ((((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) ∧ 𝑥 ∈ {𝐵}) → 𝑥𝐵)
53, 4eqeltrrd 2271 . . . . . 6 ((((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) ∧ 𝑥 ∈ {𝐵}) → 𝐵𝐵)
65ex 115 . . . . 5 (((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) → (𝑥 ∈ {𝐵} → 𝐵𝐵))
71, 6mtoi 665 . . . 4 (((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) → ¬ 𝑥 ∈ {𝐵})
8 snidg 3647 . . . . . . . . 9 (𝐵𝑉𝐵 ∈ {𝐵})
9 elun2 3327 . . . . . . . . 9 (𝐵 ∈ {𝐵} → 𝐵 ∈ (𝐴 ∪ {𝐵}))
108, 9syl 14 . . . . . . . 8 (𝐵𝑉𝐵 ∈ (𝐴 ∪ {𝐵}))
1110adantr 276 . . . . . . 7 ((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) → 𝐵 ∈ (𝐴 ∪ {𝐵}))
12 ontr1 4420 . . . . . . . 8 ((𝐴 ∪ {𝐵}) ∈ On → ((𝑥𝐵𝐵 ∈ (𝐴 ∪ {𝐵})) → 𝑥 ∈ (𝐴 ∪ {𝐵})))
1312adantl 277 . . . . . . 7 ((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) → ((𝑥𝐵𝐵 ∈ (𝐴 ∪ {𝐵})) → 𝑥 ∈ (𝐴 ∪ {𝐵})))
1411, 13mpan2d 428 . . . . . 6 ((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) → (𝑥𝐵𝑥 ∈ (𝐴 ∪ {𝐵})))
1514imp 124 . . . . 5 (((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐴 ∪ {𝐵}))
16 elun 3300 . . . . 5 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑥𝐴𝑥 ∈ {𝐵}))
1715, 16sylib 122 . . . 4 (((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) → (𝑥𝐴𝑥 ∈ {𝐵}))
187, 17ecased 1360 . . 3 (((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) → 𝑥𝐴)
1918ex 115 . 2 ((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) → (𝑥𝐵𝑥𝐴))
2019ssrdv 3185 1 ((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) → 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2164  cun 3151  wss 3153  {csn 3618  Oncon0 4394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-uni 3836  df-tr 4128  df-iord 4397  df-on 4399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator