ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onunsnss GIF version

Theorem onunsnss 7047
Description: Adding a singleton to create an ordinal. (Contributed by Jim Kingdon, 20-Oct-2021.)
Assertion
Ref Expression
onunsnss ((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) → 𝐵𝐴)

Proof of Theorem onunsnss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elirr 4610 . . . . 5 ¬ 𝐵𝐵
2 elsni 3664 . . . . . . . 8 (𝑥 ∈ {𝐵} → 𝑥 = 𝐵)
32adantl 277 . . . . . . 7 ((((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) ∧ 𝑥 ∈ {𝐵}) → 𝑥 = 𝐵)
4 simplr 528 . . . . . . 7 ((((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) ∧ 𝑥 ∈ {𝐵}) → 𝑥𝐵)
53, 4eqeltrrd 2287 . . . . . 6 ((((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) ∧ 𝑥 ∈ {𝐵}) → 𝐵𝐵)
65ex 115 . . . . 5 (((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) → (𝑥 ∈ {𝐵} → 𝐵𝐵))
71, 6mtoi 668 . . . 4 (((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) → ¬ 𝑥 ∈ {𝐵})
8 snidg 3675 . . . . . . . . 9 (𝐵𝑉𝐵 ∈ {𝐵})
9 elun2 3352 . . . . . . . . 9 (𝐵 ∈ {𝐵} → 𝐵 ∈ (𝐴 ∪ {𝐵}))
108, 9syl 14 . . . . . . . 8 (𝐵𝑉𝐵 ∈ (𝐴 ∪ {𝐵}))
1110adantr 276 . . . . . . 7 ((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) → 𝐵 ∈ (𝐴 ∪ {𝐵}))
12 ontr1 4457 . . . . . . . 8 ((𝐴 ∪ {𝐵}) ∈ On → ((𝑥𝐵𝐵 ∈ (𝐴 ∪ {𝐵})) → 𝑥 ∈ (𝐴 ∪ {𝐵})))
1312adantl 277 . . . . . . 7 ((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) → ((𝑥𝐵𝐵 ∈ (𝐴 ∪ {𝐵})) → 𝑥 ∈ (𝐴 ∪ {𝐵})))
1411, 13mpan2d 428 . . . . . 6 ((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) → (𝑥𝐵𝑥 ∈ (𝐴 ∪ {𝐵})))
1514imp 124 . . . . 5 (((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐴 ∪ {𝐵}))
16 elun 3325 . . . . 5 (𝑥 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑥𝐴𝑥 ∈ {𝐵}))
1715, 16sylib 122 . . . 4 (((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) → (𝑥𝐴𝑥 ∈ {𝐵}))
187, 17ecased 1364 . . 3 (((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) ∧ 𝑥𝐵) → 𝑥𝐴)
1918ex 115 . 2 ((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) → (𝑥𝐵𝑥𝐴))
2019ssrdv 3210 1 ((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) → 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 712   = wceq 1375  wcel 2180  cun 3175  wss 3177  {csn 3646  Oncon0 4431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191  ax-setind 4606
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-v 2781  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-sn 3652  df-uni 3868  df-tr 4162  df-iord 4434  df-on 4436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator