| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabresid | GIF version | ||
| Description: The restricted identity relation expressed as an ordered-pair class abstraction. (Contributed by FL, 25-Apr-2012.) |
| Ref | Expression |
|---|---|
| opabresid | ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-id 4348 | . . . 4 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
| 2 | equcom 1730 | . . . . 5 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
| 3 | 2 | opabbii 4119 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} |
| 4 | 1, 3 | eqtri 2227 | . . 3 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} |
| 5 | 4 | reseq1i 4964 | . 2 ⊢ ( I ↾ 𝐴) = ({〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} ↾ 𝐴) |
| 6 | resopab 5012 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
| 7 | 5, 6 | eqtri 2227 | 1 ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 {copab 4112 I cid 4343 ↾ cres 4685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-res 4695 |
| This theorem is referenced by: mptresid 5022 |
| Copyright terms: Public domain | W3C validator |