| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabresid | GIF version | ||
| Description: The restricted identity relation expressed as an ordered-pair class abstraction. (Contributed by FL, 25-Apr-2012.) |
| Ref | Expression |
|---|---|
| opabresid | ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-id 4383 | . . . 4 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
| 2 | equcom 1752 | . . . . 5 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
| 3 | 2 | opabbii 4150 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} |
| 4 | 1, 3 | eqtri 2250 | . . 3 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} |
| 5 | 4 | reseq1i 5000 | . 2 ⊢ ( I ↾ 𝐴) = ({〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} ↾ 𝐴) |
| 6 | resopab 5048 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
| 7 | 5, 6 | eqtri 2250 | 1 ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 {copab 4143 I cid 4378 ↾ cres 4720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-res 4730 |
| This theorem is referenced by: mptresid 5058 |
| Copyright terms: Public domain | W3C validator |