ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabresid GIF version

Theorem opabresid 4944
Description: The restricted identity expressed with the class builder. (Contributed by FL, 25-Apr-2012.)
Assertion
Ref Expression
opabresid {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝑥)} = ( I ↾ 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem opabresid
StepHypRef Expression
1 resopab 4935 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝑥} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝑥)}
2 equcom 1699 . . . . 5 (𝑦 = 𝑥𝑥 = 𝑦)
32opabbii 4056 . . . 4 {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝑥} = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
4 df-id 4278 . . . 4 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
53, 4eqtr4i 2194 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝑥} = I
65reseq1i 4887 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝑥} ↾ 𝐴) = ( I ↾ 𝐴)
71, 6eqtr3i 2193 1 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝑥)} = ( I ↾ 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1348  wcel 2141  {copab 4049   I cid 4273  cres 4613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-res 4623
This theorem is referenced by:  mptresid  4945
  Copyright terms: Public domain W3C validator