Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opabresid | GIF version |
Description: The restricted identity expressed with the class builder. (Contributed by FL, 25-Apr-2012.) |
Ref | Expression |
---|---|
opabresid | ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} = ( I ↾ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resopab 4928 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
2 | equcom 1694 | . . . . 5 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
3 | 2 | opabbii 4049 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
4 | df-id 4271 | . . . 4 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
5 | 3, 4 | eqtr4i 2189 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} = I |
6 | 5 | reseq1i 4880 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} ↾ 𝐴) = ( I ↾ 𝐴) |
7 | 1, 6 | eqtr3i 2188 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} = ( I ↾ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 ∈ wcel 2136 {copab 4042 I cid 4266 ↾ cres 4606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-res 4616 |
This theorem is referenced by: mptresid 4938 |
Copyright terms: Public domain | W3C validator |