![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opabresid | GIF version |
Description: The restricted identity relation expressed as an ordered-pair class abstraction. (Contributed by FL, 25-Apr-2012.) |
Ref | Expression |
---|---|
opabresid | ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-id 4324 | . . . 4 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
2 | equcom 1717 | . . . . 5 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
3 | 2 | opabbii 4096 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} |
4 | 1, 3 | eqtri 2214 | . . 3 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} |
5 | 4 | reseq1i 4938 | . 2 ⊢ ( I ↾ 𝐴) = ({〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} ↾ 𝐴) |
6 | resopab 4986 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦 = 𝑥} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
7 | 5, 6 | eqtri 2214 | 1 ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2164 {copab 4089 I cid 4319 ↾ cres 4661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-res 4671 |
This theorem is referenced by: mptresid 4996 |
Copyright terms: Public domain | W3C validator |