ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelco2g Unicode version

Theorem opelco2g 4847
Description: Ordered pair membership in a composition. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 24-Feb-2015.)
Assertion
Ref Expression
opelco2g  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  ( C  o.  D )  <->  E. x
( <. A ,  x >.  e.  D  /\  <. x ,  B >.  e.  C
) ) )
Distinct variable groups:    x, A    x, B    x, C    x, D
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem opelco2g
StepHypRef Expression
1 brcog 4846 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( C  o.  D ) B  <->  E. x ( A D x  /\  x C B ) ) )
2 df-br 4046 . 2  |-  ( A ( C  o.  D
) B  <->  <. A ,  B >.  e.  ( C  o.  D ) )
3 df-br 4046 . . . 4  |-  ( A D x  <->  <. A ,  x >.  e.  D )
4 df-br 4046 . . . 4  |-  ( x C B  <->  <. x ,  B >.  e.  C
)
53, 4anbi12i 460 . . 3  |-  ( ( A D x  /\  x C B )  <->  ( <. A ,  x >.  e.  D  /\  <. x ,  B >.  e.  C ) )
65exbii 1628 . 2  |-  ( E. x ( A D x  /\  x C B )  <->  E. x
( <. A ,  x >.  e.  D  /\  <. x ,  B >.  e.  C
) )
71, 2, 63bitr3g 222 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  ( C  o.  D )  <->  E. x
( <. A ,  x >.  e.  D  /\  <. x ,  B >.  e.  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1515    e. wcel 2176   <.cop 3636   class class class wbr 4045    o. ccom 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-co 4685
This theorem is referenced by:  dfco2  5183  dmfco  5649
  Copyright terms: Public domain W3C validator