ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brcogw Unicode version

Theorem brcogw 4848
Description: Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Assertion
Ref Expression
brcogw  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  X  e.  Z
)  /\  ( A D X  /\  X C B ) )  ->  A ( C  o.  D ) B )

Proof of Theorem brcogw
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl1 1003 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  X  e.  Z
)  /\  ( A D X  /\  X C B ) )  ->  A  e.  V )
2 simpl2 1004 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  X  e.  Z
)  /\  ( A D X  /\  X C B ) )  ->  B  e.  W )
3 breq2 4049 . . . . . 6  |-  ( x  =  X  ->  ( A D x  <->  A D X ) )
4 breq1 4048 . . . . . 6  |-  ( x  =  X  ->  (
x C B  <->  X C B ) )
53, 4anbi12d 473 . . . . 5  |-  ( x  =  X  ->  (
( A D x  /\  x C B )  <->  ( A D X  /\  X C B ) ) )
65spcegv 2861 . . . 4  |-  ( X  e.  Z  ->  (
( A D X  /\  X C B )  ->  E. x
( A D x  /\  x C B ) ) )
76imp 124 . . 3  |-  ( ( X  e.  Z  /\  ( A D X  /\  X C B ) )  ->  E. x ( A D x  /\  x C B ) )
873ad2antl3 1164 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  X  e.  Z
)  /\  ( A D X  /\  X C B ) )  ->  E. x ( A D x  /\  x C B ) )
9 brcog 4846 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( C  o.  D ) B  <->  E. x ( A D x  /\  x C B ) ) )
109biimpar 297 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  E. x
( A D x  /\  x C B ) )  ->  A
( C  o.  D
) B )
111, 2, 8, 10syl21anc 1249 1  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  X  e.  Z
)  /\  ( A D X  /\  X C B ) )  ->  A ( C  o.  D ) B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   class class class wbr 4045    o. ccom 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-co 4685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator