| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divides | Unicode version | ||
| Description: Define the divides
relation. |
| Ref | Expression |
|---|---|
| divides |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4048 |
. . 3
| |
| 2 | df-dvds 12143 |
. . . 4
| |
| 3 | 2 | eleq2i 2273 |
. . 3
|
| 4 | 1, 3 | bitri 184 |
. 2
|
| 5 | oveq2 5959 |
. . . . 5
| |
| 6 | 5 | eqeq1d 2215 |
. . . 4
|
| 7 | 6 | rexbidv 2508 |
. . 3
|
| 8 | eqeq2 2216 |
. . . 4
| |
| 9 | 8 | rexbidv 2508 |
. . 3
|
| 10 | 7, 9 | opelopab2 4321 |
. 2
|
| 11 | 4, 10 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-iota 5237 df-fv 5284 df-ov 5954 df-dvds 12143 |
| This theorem is referenced by: dvdsval2 12145 dvds0lem 12156 dvds1lem 12157 dvds2lem 12158 0dvds 12166 dvdsle 12199 divconjdvds 12204 odd2np1 12228 even2n 12229 oddm1even 12230 opeo 12252 omeo 12253 m1exp1 12256 divalgb 12280 modremain 12284 zeqzmulgcd 12335 gcddiv 12384 dvdssqim 12389 coprmdvds2 12459 congr 12466 divgcdcoprm0 12467 cncongr2 12470 dvdsnprmd 12491 prmpwdvds 12722 lgsquadlem2 15599 |
| Copyright terms: Public domain | W3C validator |