| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divides | Unicode version | ||
| Description: Define the divides
relation. |
| Ref | Expression |
|---|---|
| divides |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4035 |
. . 3
| |
| 2 | df-dvds 11970 |
. . . 4
| |
| 3 | 2 | eleq2i 2263 |
. . 3
|
| 4 | 1, 3 | bitri 184 |
. 2
|
| 5 | oveq2 5933 |
. . . . 5
| |
| 6 | 5 | eqeq1d 2205 |
. . . 4
|
| 7 | 6 | rexbidv 2498 |
. . 3
|
| 8 | eqeq2 2206 |
. . . 4
| |
| 9 | 8 | rexbidv 2498 |
. . 3
|
| 10 | 7, 9 | opelopab2 4306 |
. 2
|
| 11 | 4, 10 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-iota 5220 df-fv 5267 df-ov 5928 df-dvds 11970 |
| This theorem is referenced by: dvdsval2 11972 dvds0lem 11983 dvds1lem 11984 dvds2lem 11985 0dvds 11993 dvdsle 12026 divconjdvds 12031 odd2np1 12055 even2n 12056 oddm1even 12057 opeo 12079 omeo 12080 m1exp1 12083 divalgb 12107 modremain 12111 zeqzmulgcd 12162 gcddiv 12211 dvdssqim 12216 coprmdvds2 12286 congr 12293 divgcdcoprm0 12294 cncongr2 12297 dvdsnprmd 12318 prmpwdvds 12549 lgsquadlem2 15403 |
| Copyright terms: Public domain | W3C validator |