Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > divides | Unicode version |
Description: Define the divides relation. means divides into with no remainder. For example, (ex-dvds 13621). As proven in dvdsval3 11731, . See divides 11729 and dvdsval2 11730 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
divides |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3983 | . . 3 | |
2 | df-dvds 11728 | . . . 4 | |
3 | 2 | eleq2i 2233 | . . 3 |
4 | 1, 3 | bitri 183 | . 2 |
5 | oveq2 5850 | . . . . 5 | |
6 | 5 | eqeq1d 2174 | . . . 4 |
7 | 6 | rexbidv 2467 | . . 3 |
8 | eqeq2 2175 | . . . 4 | |
9 | 8 | rexbidv 2467 | . . 3 |
10 | 7, 9 | opelopab2 4248 | . 2 |
11 | 4, 10 | syl5bb 191 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wrex 2445 cop 3579 class class class wbr 3982 copab 4042 (class class class)co 5842 cmul 7758 cz 9191 cdvds 11727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-iota 5153 df-fv 5196 df-ov 5845 df-dvds 11728 |
This theorem is referenced by: dvdsval2 11730 dvds0lem 11741 dvds1lem 11742 dvds2lem 11743 0dvds 11751 dvdsle 11782 divconjdvds 11787 odd2np1 11810 even2n 11811 oddm1even 11812 opeo 11834 omeo 11835 m1exp1 11838 divalgb 11862 modremain 11866 zeqzmulgcd 11903 gcddiv 11952 dvdssqim 11957 coprmdvds2 12025 congr 12032 divgcdcoprm0 12033 cncongr2 12036 dvdsnprmd 12057 prmpwdvds 12285 |
Copyright terms: Public domain | W3C validator |