| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divides | Unicode version | ||
| Description: Define the divides
relation. |
| Ref | Expression |
|---|---|
| divides |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4083 |
. . 3
| |
| 2 | df-dvds 12285 |
. . . 4
| |
| 3 | 2 | eleq2i 2296 |
. . 3
|
| 4 | 1, 3 | bitri 184 |
. 2
|
| 5 | oveq2 6002 |
. . . . 5
| |
| 6 | 5 | eqeq1d 2238 |
. . . 4
|
| 7 | 6 | rexbidv 2531 |
. . 3
|
| 8 | eqeq2 2239 |
. . . 4
| |
| 9 | 8 | rexbidv 2531 |
. . 3
|
| 10 | 7, 9 | opelopab2 4358 |
. 2
|
| 11 | 4, 10 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-iota 5274 df-fv 5322 df-ov 5997 df-dvds 12285 |
| This theorem is referenced by: dvdsval2 12287 dvds0lem 12298 dvds1lem 12299 dvds2lem 12300 0dvds 12308 dvdsle 12341 divconjdvds 12346 odd2np1 12370 even2n 12371 oddm1even 12372 opeo 12394 omeo 12395 m1exp1 12398 divalgb 12422 modremain 12426 zeqzmulgcd 12477 gcddiv 12526 dvdssqim 12531 coprmdvds2 12601 congr 12608 divgcdcoprm0 12609 cncongr2 12612 dvdsnprmd 12633 prmpwdvds 12864 lgsquadlem2 15742 |
| Copyright terms: Public domain | W3C validator |