Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > divides | Unicode version |
Description: Define the divides relation. means divides into with no remainder. For example, (ex-dvds 14051). As proven in dvdsval3 11766, . See divides 11764 and dvdsval2 11765 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
divides |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3999 | . . 3 | |
2 | df-dvds 11763 | . . . 4 | |
3 | 2 | eleq2i 2242 | . . 3 |
4 | 1, 3 | bitri 184 | . 2 |
5 | oveq2 5873 | . . . . 5 | |
6 | 5 | eqeq1d 2184 | . . . 4 |
7 | 6 | rexbidv 2476 | . . 3 |
8 | eqeq2 2185 | . . . 4 | |
9 | 8 | rexbidv 2476 | . . 3 |
10 | 7, 9 | opelopab2 4264 | . 2 |
11 | 4, 10 | bitrid 192 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 wrex 2454 cop 3592 class class class wbr 3998 copab 4058 (class class class)co 5865 cmul 7791 cz 9226 cdvds 11762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-iota 5170 df-fv 5216 df-ov 5868 df-dvds 11763 |
This theorem is referenced by: dvdsval2 11765 dvds0lem 11776 dvds1lem 11777 dvds2lem 11778 0dvds 11786 dvdsle 11817 divconjdvds 11822 odd2np1 11845 even2n 11846 oddm1even 11847 opeo 11869 omeo 11870 m1exp1 11873 divalgb 11897 modremain 11901 zeqzmulgcd 11938 gcddiv 11987 dvdssqim 11992 coprmdvds2 12060 congr 12067 divgcdcoprm0 12068 cncongr2 12071 dvdsnprmd 12092 prmpwdvds 12320 |
Copyright terms: Public domain | W3C validator |