ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelresi GIF version

Theorem opelresi 4989
Description: 𝐴, 𝐴 belongs to a restriction of the identity class iff 𝐴 belongs to the restricting class. (Contributed by FL, 27-Oct-2008.) (Revised by NM, 30-Mar-2016.)
Assertion
Ref Expression
opelresi (𝐴𝑉 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝐵) ↔ 𝐴𝐵))

Proof of Theorem opelresi
StepHypRef Expression
1 opelresg 4985 . 2 (𝐴𝑉 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝐵) ↔ (⟨𝐴, 𝐴⟩ ∈ I ∧ 𝐴𝐵)))
2 ididg 4849 . . . 4 (𝐴𝑉𝐴 I 𝐴)
3 df-br 4060 . . . 4 (𝐴 I 𝐴 ↔ ⟨𝐴, 𝐴⟩ ∈ I )
42, 3sylib 122 . . 3 (𝐴𝑉 → ⟨𝐴, 𝐴⟩ ∈ I )
54biantrurd 305 . 2 (𝐴𝑉 → (𝐴𝐵 ↔ (⟨𝐴, 𝐴⟩ ∈ I ∧ 𝐴𝐵)))
61, 5bitr4d 191 1 (𝐴𝑉 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝐵) ↔ 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2178  cop 3646   class class class wbr 4059   I cid 4353  cres 4695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-res 4705
This theorem is referenced by:  issref  5084
  Copyright terms: Public domain W3C validator