ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelresi GIF version

Theorem opelresi 4957
Description: 𝐴, 𝐴 belongs to a restriction of the identity class iff 𝐴 belongs to the restricting class. (Contributed by FL, 27-Oct-2008.) (Revised by NM, 30-Mar-2016.)
Assertion
Ref Expression
opelresi (𝐴𝑉 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝐵) ↔ 𝐴𝐵))

Proof of Theorem opelresi
StepHypRef Expression
1 opelresg 4953 . 2 (𝐴𝑉 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝐵) ↔ (⟨𝐴, 𝐴⟩ ∈ I ∧ 𝐴𝐵)))
2 ididg 4819 . . . 4 (𝐴𝑉𝐴 I 𝐴)
3 df-br 4034 . . . 4 (𝐴 I 𝐴 ↔ ⟨𝐴, 𝐴⟩ ∈ I )
42, 3sylib 122 . . 3 (𝐴𝑉 → ⟨𝐴, 𝐴⟩ ∈ I )
54biantrurd 305 . 2 (𝐴𝑉 → (𝐴𝐵 ↔ (⟨𝐴, 𝐴⟩ ∈ I ∧ 𝐴𝐵)))
61, 5bitr4d 191 1 (𝐴𝑉 → (⟨𝐴, 𝐴⟩ ∈ ( I ↾ 𝐵) ↔ 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2167  cop 3625   class class class wbr 4033   I cid 4323  cres 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-res 4675
This theorem is referenced by:  issref  5052
  Copyright terms: Public domain W3C validator